GaIn  1.0
 All Files Functions Pages
Functions/Subroutines
Electrostatics.f90 File Reference

Defines utility routines for computing coulomb potential and field issued from gaussian basis elements. More...

Functions/Subroutines

recursive real(kind=8) function potential_from_c (r_test, alpha, r, nx, ny, nz)
 compute the potential generated at position $r_{test}$ by a Cubic Harmonic Orbital centered in r. More...
 
recursive real(kind=8) function potential_from_y (r_test, alpha, r, l, m)
 compute the potential generated at position r_test by a Solid Harmonic Orbital centered in r. More...
 
recursive subroutine field_from_y (r_test, alpha, r, l, m, E_test)
 compute the three component of the electric field generated at position r_test by a Solid Harmonic Orbital centered in r More...
 
recursive subroutine field_from_c (r_test, alpha, r, nx, ny, nz, E_test)
 compute the three component of the electric field generated at position r_test by a Cubic Harmonic Orbital centered in r More...
 

Detailed Description

Defines utility routines for computing coulomb potential and field issued from gaussian basis elements.

Author: I. Duchemin July 2015

Function/Subroutine Documentation

recursive subroutine field_from_c ( real(kind=8), dimension(3)  r_test,
real(kind=8)  alpha,
real(kind=8), dimension(3)  r,
integer  nx,
integer  ny,
integer  nz,
real(kind=8), dimension(3)  E_test 
)

compute the three component of the electric field generated at position r_test by a Cubic Harmonic Orbital centered in r

$ \nabla \int dr' \, \frac{1}{|r_{test}-r'|} Y_{xyz}(r'-r) $

Parameters
r_testposition where we compute the potential
alphaexponent of the source charge distribution
rcenter of the source charge distribution
nxx power for first cubic Harmonic
nyy power for first cubic Harmonic
nzz power for first cubic Harmonic
e_testelectric field at test position
recursive subroutine field_from_y ( real(kind=8), dimension(3)  r_test,
real(kind=8)  alpha,
real(kind=8), dimension(3)  r,
integer  l,
integer  m,
real(kind=8), dimension(3)  E_test 
)

compute the three component of the electric field generated at position r_test by a Solid Harmonic Orbital centered in r

$ \nabla \int dr' \, \frac{1}{|r_{test}-r'|} Y_{lm}(r'-r) $

Parameters
r_testposition where we compute the potential
alphaexponent of the source charge distribution
rcenter of the source charge distribution
ll momentum of source the charge distribution
mm momentum of source the charge distribution
e_testelectric field at test position
recursive real(kind=8) function potential_from_c ( real(kind=8), dimension(3)  r_test,
real(kind=8)  alpha,
real(kind=8), dimension(3)  r,
integer  nx,
integer  ny,
integer  nz 
)

compute the potential generated at position $r_{test}$ by a Cubic Harmonic Orbital centered in r.

$ \int dr' \, \frac{1}{|r_{test}-r'|} Y_{xyz}(r'-r) $

Parameters
r_testposition where we compute the potential
alphaexponent of the source charge distribution
rcenter of the source charge distribution
nxx power for first cubic Harmonic
nyy power for first cubic Harmonic
nzz power for first cubic Harmonic
recursive real(kind=8) function potential_from_y ( real(kind=8), dimension(3)  r_test,
real(kind=8)  alpha,
real(kind=8), dimension(3)  r,
integer  l,
integer  m 
)

compute the potential generated at position r_test by a Solid Harmonic Orbital centered in r.

$ \int dr' \, \frac{1}{|r_{test}-r'|} Y_{lm}(r'-r) $

Parameters
r_testposition where we compute the potential
alphaexponent of the source charge distribution
rcenter of the source charge distribution
ll momentum of source the charge distribution
mm momentum of source the charge distribution