
Architecture of DMTCP

Gene Cooperman

March, 2015

This is intended as a gentle introduction to the architecture of DMTCP. Shorter descriptions are possible.
For a low-level description with references to code in the implementation, see doc/restart algorithm.txt .
For the general use of plugins, see doc/plugin-tutorial.pdf . DMTCP uses plugins internally from
DMTCP ROOT/src/plugin. DMTCP also offers optional plugins (not enabled by default) to end users. Thes
come in two flavors: DMTCP ROOT/plugin (fully supported) and DMTCP ROOT/contrib (newer plugins, possibly
contributed by third parties).

1. Usage of DTMCP:

1: dmtcp launch a.out

2: dmtcp command --checkpoint

→֒ ckpt a.out.*.dmtcp
3: dmtcp restart ckpt a.out.*.dmtcp

DMTCP offers a --help command line option along with additional options both for configure and for the
individual DMTCP commands. To use DMTCP, just prefix your command line with dmtcp launch.

2. dmtcp launch a.out

The command dmtcp launch a.out is roughly equivalent to:

1: dmtcp coordinator --background (if not already running)
2: LD PRELOAD=libdmtcp.so a.out

(LD PRELOAD causes libdmtcp.so to be loaded first, and initialized before the call to main in a.out.)

The dmtcp launch command will cause a coordinator process to be launched on the local host with the
default DMTCP port (if one is not already available).

DMTCP includes a special coordinator process so that DMTCP can also checkpoint distributed compu-
tations across many computers. The user can issue a command to the coordinator, which will then relay the
command to each of the user processes of the distributed computation.

Note that a DMTCP computation is defined to be a coordinator process and the set of user processes
connected to that coordinator. Therefore, one can have more than one DMTCP computation on a single
computer, each computation having its own unique coordinator. Each coordinator is defined by its unique
network address, “(hostname, port)”, which defaults to “(localhost, 7779)”.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

user thread

ckpt thread

DMTCP
coordinator

a.out process

1



The coordinator is stateless. If the computation is ever killed, one needs only to start an entirely new
coordinator, and then restart using the latest checkpoint images for each user process.

LD PRELOAD is a special environment variable known to the loader. When the loader tries to load a
binary (a.out, in this case), the loader will first check if LD PRELOAD is set (see ‘man ld.so’). If it is set,
the loader will load the binary (a.out) and then the preload library (libdmtcp.so) before running the ‘main()’
routine in a.out. (In fact, dmtcp launch may also preload some plugin libraries, such as pidvirt.so (starting
with DMTCP-2.0) and set some environment variables such as DMTCP DLSYM OFFSET.)

When the library libdmtcp.so is loaded, any top-level variables are initialized, before calling the user
main(). If the top-level variable is a C++ object, then the C++ constructor is called before the user main.
In DMTCP, the first code to execute is the code below, inside libdmtcp.so:

dmtcp::DmtcpWorker dmtcp::DmtcpWorker::theInstance;

This initializes the global variable, theInstance via a call to new dmtcp::DmtcpWorker::DmtcpWorker().
(Here, dmtcp is a C++ namespace, and the first DmtcpWorker is the class name, while the second DmtcpWorker
is the constructor function. If DMTCP were not using C++, then it would use GNU gcc attributes to directly
run a constructor function.)

Note that DMTCP is organized in at least two layers. The lowest layer is MTCP (mtcp subdirectory),
which handles single-process checkpointing. The higher layer is again called DMTCP (dmtcp subdirectory),
and delegates to MTCP when it needs to checkpoint one process. MTCP does not require a separate DMTCP
coordinator.

So, at startup, we see:

1: a.out process:
2: primary user thread:
3: new DmtcpWorker():
4: Create a socket to the coordinator
5: Register the signal handler that will be used for checkpoints.

The signal handler is src/threadlist.cpp:stopthisthread(sig)
The default signal is src/siginfo.cpp:STOPSIGNAL (default: SIGUSR2)
The signal handler for STOPSIGNAL is registered by SigInfo::setupCkptSigHandler(&stopthisthread)
in src/threadlist.cpp

6: Create the checkpoint thread:
Call pthread create (&checkpointhreadid, NULL, checkpointhread, NULL) in src/threadlist.cpp

7: Wait until the checkpoint thread has initialized.

8: checkpoint thread:
9: checkpointhread(dummy): [from src/threadlist.cpp]

10: Register a.out process with coordinator
11: Tell user thread we’re done
12: Call select() on socket to coordinator

13: primary user thread:
14: new DmtcpWorker(): [continued from above invocation]
15: Checkpoint thread is now initialized. Return.
16: main() [User code now executes.]

PRINCIPLE: At any given moment either the user threads are active and the checkpoint thread is blocked
on select(), or the checkpoint thread is active and the user threads are blocked inside the signal handler,
stopthisthread().

2



3. Execute a Checkpoint:

�
�
�
�
�
�
�
�
�
�
�
�

����

��������

����

user thread

user thread 2

ckpt thread

DMTCP
coordinator

a.out process

SIGUSR2

SIGUSR2

SIGUSR2

CKPT msg

1: checkpoint thread:
2: return from DmtcpWorker::waitForCoordinatorMsg() in src/dmtcpworker.cpp
3: receive CKPT message
4: send STOPSIGNAL (SIGUSR2) to each user thread

See: THREAD TGKILL(motherpid, thread->tid, SigInfo::ckptSignal() in the section
labelled case ST RUNNING: in src/threadlist.cpp

See Thread UpdateState(curThread, ST SUSPINPROG, ST SIGNALED)

and Thread UpdateState(curThread, ST SUSPENDED, ST SUSPINPROG) in src/threadlist.cpp
5: Recall that dmtcpWorker created a signal handler, stopthisthread(), for STOPSIGNAL (default:

SIGUSR2)
6: Each user thread in that signal handler will execute sem wait(&semWaitForCkptThreadSignal) and

block.
7: The checkpoint thread does the checkpoint.

8: Release each thread from its mutex by calling sem post(&semWaitForCkptThreadSignal) inside resumeThreads().
9: Each thread updates its state from ST SUSPENDED to ST RUNNING:

See Thread UpdateState(curThread, ST RUNNING, ST SUSPENDED) in src/threadlist.cpp
10: Call DmtcpWorker::waitForCoordinatorMsg() using the socket to the coordinator and again wait for

messages from the coordinator.

4. Checkpoint strategy (overview)

1: Quiesce all user threads (using STOPSIGNAL (SIGUSR2), as above)
2: Drain sockets

(a) Sender sends a “cookie”
(b) Receiver receives until it sees the “cookie”

Note: Usually all sockets are “internal” — within the current computation. Heuristics are provided for
the case of “external” sockets.

3: Interrogate kernel state (open file descriptors, file descriptor offset, etc.)
4: Save register values using setcontext (similar to setjmp) in mtcp/mtcp.c
5: Copy all user-space memory to checkpoint image To find all user-space memory, one can execute:

cat /proc/self/maps

6: Unblock all use threads

5. Restart strategy (overview)

This section will be revised in the future.
The key ideas are that dmtcp restart exec’s into mtcp restart. The program mtcp restart (source

code in src/mtcp/) is created specially so that the process will consist of a single relocatable memory segment.
The program relocates itself into a “hole” in memory not occupied by the checkpoint image. It then calls
src/mtcp/mtcp restart.c:restorememoryareas(). This maps the memory areas of the checkpoint image
into their original memory addresses. (“Bits are bits.”)

3



While still in restorememoryareas(), it calls restore libc() to update the information in memory about
the different threads. Finally, it calls a function pointer, restore info.post restart, which in fact is
bound to ThreadList::postRestart() in src/threadlist.cpp.

It is then the job of ThreadList::postRestart() to create the remaining threads and set their state
correctly. Each remaining thread finds itself inside the signal handler again (After all, “bits are bits.”), and
the checkpoint thread then releases each thread, as described in the previous section.

6. Principle: DMTCP is contagious

New Linux “tasks” are created in one of three ways:

1. new thread: created by pthread create() or clone()

2. new process: created by fork()

3. new remote process: typically created by the ‘system’ system call:
system("ssh REMOTE HOST a.out");

DMTCP makes sure to load itself using wrapper functions.

7. Principle: One DMTCP Coordinator for each DMTCP Computation

One may wish to run multiple DMTCP-based computations on a single host. This is easily done by using
the --host and --port flags of dmtcp launch or of dmtcp coordinator. If not specified, the default values
are localhost and port 7779. By using dmtcp command, one can communicate a checkpoint or other request
to one’s preferred coordinator (again by specifying host and port, if one is not using the default coordinator).

In the simplest case, the user invokes only dmtcp launch, with no flags. The dmtcp launch com-
mand then looks for an existing coordinator at localhost:7779. If none is found, dmtcp launch invokes
dmtcp coordinator with those default values, localhost:7779.

Thus, an occasional issue occurs when two users on the same host each invoke dmtcp launch with default
parameters. They cannot both use the same coordinator. Similarly, a single user may want to launch two
independent computations, and independently checkpoint them. If the user invokes dmtcp launch (default
parameters) for both computation, then there will only be one coordinator. So, in the view of DMTCP,
there will only be a single computation, and a checkpoint command will checkpoint the processes of both
computations.

8. Plugins and other End-User Customizations

DMTCP offers a rich set of features for customizing the behavior of DMTCP. In this short overview, we will
point to examples that can easily be modified by an end-user. See doc/plugin-tutorial.pdf for a more
extensive description of plugins.

DMTCP Plugins. DMTCP plugins are the most general way to customize DMTCP. Examples are in
DMTCP ROOT/test/plugin/. A dynamic library (*.so) file is created to modify the behavior of DMTCP.
The library can write additional wrapper functions (and even define wrappers around previous wrapper
functions). The library can also register to be notified of DMTCP events. In this case, DMTCP will call any
plugin functions registered for each event. Examples of important events are e.g. prior to checkpoint, after
resume, and after restart from a checkpoint image. As of this writing, there is no central list of all DMTCP
events, and names of events are still subject to change.

Plugin libraries are preloaded after libdmtcp.so. As with all preloaded libraries, they can initialize
themselves before the user’s “main” function, and at run-time, plugin wrapper functions will be found in
standard Linux library search order prior to ordinary library functions in libc.so and elsewhere.

4



For example, the sleep2 plugin example uses two plugins. After building the plugins, it might be called
as follows:

dmtcp launch --with-plugin \
PATH/sleep1/dmtcp sleep1hijack.so:PATH/sleep2/dmtcp sleep2hijack.so a.out

where PATH is DMTCP ROOT/test/plugin

In a more involved example, whenever ./configure --enable-ptrace-support is specified, then DMTCP
will use the plugin DMTCP ROOT/plugin/ptrace/ptracehijack.so. A new plugin to provide PID/TID
virtualization is currently planned. As with support for ptrace, a more modular structure for PID/TID
virtualization will be easier to maintain.

Dmtcpaware. The dmtcpaware interface is an obsolete customization mechanism that is no longer sup-
ported in DMTCP-2.2 and beyond.

MTCP. In DMTCP-2.1 and earlier, the MTCP component of DMTCP could be compiled to run stan-
dalone, with opportunities for hook functions using weak symbols. MTCP has now been almost entirely
re-written, and is now tightly integrated with DMTCP. For thos who wished to use the prior MTCP archi-
tecture (just the checkpoint thread, but no separate coordinator), a plugin with those features is planned for
the future.

9. Implementation of Plugins

The implementation techniques of wrapper functions and pid/tid virtualization we part of the DMTCP
implementation not too long after the initial offering of DMTCP. More recently, this functionality was
wrapped into a high level abstraction, plugins. This section emphasizes the implementation of these features.
For information on using plugins, and writing your own, see doc/plugin-tutorial.pdf .

a. Wrapper functions

Wrapper functions are functions around functions. DMTCP creates functions around libc.so functions.
Wrapper functions are typically created using dlopen/dlsym. For example, to define a wrapper around
libc:fork(), one defines a function fork() in libdmtcp.so (see extern "C" pid t fork() in execwrappers.cpp).

Continuing this example, if the user code calls fork(), then we see the following progression.
a.out:call to fork() −→ libdmtcp.so:fork() −→ libc.so:fork()
The symbol libdmtcp.so:fork appears before libc.so:fork in the library search order because libdmtcp.so

was loaded before libc.so (due to LD PRELOAD).
Next, the wrapper around pthread create remembers the thread id of the new thread created. The

wrapper around fork ensures that the environment variable LD PRELOAD is still set to libdmtcp.so. If
LD PRELOAD does not currently include libdmtcp.so, then it is reset to include libdmtcp.so before the call
to fork(), and then LD PRELOAD is reset to the original user value after fork().

The wrapper around system (in the case of creating remote processes) is perhaps the most interesting
one. See ‘man system’ for a description of the call system. It looks at an argument, for example "ssh

REMOTE HOST a.out", and then edits the argument to "ssh REMOTE HOST dmtcp launch a.out" before call-
ing system. Of course, this works only if dmtcp launch is in the user’s path on REMOTE HOST. This is the
responsibility of the user or the system administrator.

b. PID/TID Virtualization

Any system calls that refer to a process id (pid) or thread id (tid) requires a wrapper. DMTCP then
translates between a virtual pid/tid an the real pid/tid. The user code always sees the virtual pid/tid, while
the kernel always sees the real pid/tid.

5



c. Publish/Subscribe

Plugins also offer a publish/subscribe service for situations where a DMTCP computation contains more than
one process, and the user processes must coordinate with each other. Details are in doc/plugin-tutorial.pdf .

6


