
FORM
version 4.2

Developer’s reference manual

J.A.M.Vermaseren et al.

January 3, 2020

.

Contents

1 Initial remarks . 1
2 Overview of the source code 1
2.1 The header files . 1
2.2 The source files . 2
2.3 The global structs . 4
2.4 Configuration . 6
3 Discussion of a typical FORM run 6
4 Specific topics . 19
4.1 Pattern matching . 19
4.2 The problem of dummy indices 19
4.3 Values of indices (and vectors) 21
5 The test suite . 23
6 CVS . 31
6.1 Some useful CVS idioms . 31

i

.

1 Initial remarks

This document is intended for people who are interested in understanding
how FORM works internally, how to find and correct bugs in the source
code, and how to extend FORM by implementing new features.

It is assumed, that the source code is available, either as a package
or directly via CVS access to the FORM repository. The FORM package
contains many files and several subdirectories. The actual sources of FORM,
TFORM, and ParFORM are all in the directory sources (see section 2
for an overview). Documentation can be found in the directory doc. The
testing suite is contained in the directory check.

2 Overview of the source code

Here we will discuss general aspects of the source code, i.e. the files contained
in the directory sources.

FORM is written in ANSI C. The code is split up in header files *.h

and source files *.c. Files usually don’t come in pairs of a header file with
the declarations and a source file with the definitions, but instead most
declarations are collected in a few headers. The declaration of function
headers is done in declare.h for example. The most prominent exceptions
are parallel.h and minos.h.

Each file usually contains many hundred lines of code. To make the
files more accessible, the code is structure by so–called folds. If you use
the editor STedi, the code will be visualized correctly. If you use a vi–
compatible editor, it is advisable to activate folds and set the foldmarkers
to set foldmarker=#[,#]

2.1 The header files

declare.h Contains the declarations of all publicly relevant
functions as well as of commonly used macros like
NCOPY or LOCK.

form3.h Global settings and macro definitions like word
size or version number. It includes several dif-
ferent system header files depending on the com-
puter’s architecture.

fsizes.h Defines macros that determine the size and layout
of FORM’s internal data like the sizes of the work
buffers etc.

1

ftypes.h Contains preprocessor definitions of the codes
used in the internal representation of parsed input
and expressions.

fwin.h Special settings for the Windows operating sys-
tem.

inivar.h Contains the initialization of various global data
like the FORM function names or the character
table for parsing. It also defines the global struct
A, and for TFORM the struct pointer AB.

minos.h Dedicated header to the minos.c source file.
parallel.h Dedicated header to the parallel.c source file.
portsignals.h Preprocessor definition of the OS signals FORM

can deal with.

structs.h Defines the structs that contain almost all of
FORM’s internal data.

unix.h Special definitions for Unix–like operating sys-
tems.

variable.h Some convinience preprocessor definitions to ease
the access to global variables, like cbuf or AC.

2.2 The source files

argument.c Code for the argument and term FORM state-
ments.

bugtool.c Low-level debugging code.
checkpoint.c Code to test for checkpoint conditions, to create

snapshots, and to recover from snapshot data.

comexpr.c Functions the compiler calls to translate a state-
ment that involves an algebraic expression, e.g.
Local or Id.

compcomm.c Functions the compiler calls to translate a state-
ment that neither involves an algebraic expression
nor is a variable declaration.

compiler.c Main compiler code.

compress.c Code for GZIP (de-)compression in sort files.
comtool.c Utility functions for the compiler, like AddRHS.
dollar.c Code dealing with dollar variables.

2

execute.c Code for the execution phase of a module. Also,
code dealing with brackets in FORM expressions.

extcmd.c External command code.
factor.c Simple factorizing code for dollar variables and

expressions.

findpat.c Pattern matching for symbols and dot products.
function.c Pattern matching for functions.
if.c Code for the if statement.

index.c Code for bracket indexing.
lus.c Code to find loops in index contractions.
message.c Text output functions, like MesPrint or

PrintTerm.

minos.c The minos database.
module.c Code for module execution and the

moduleoption, exec and pipe statements.
mpi2.c MPI2 code for ParFORM.

mpi.c MPI1 code for ParFORM.
names.c Name administration code to deal with the dec-

laration of FORM variables.
normal.c Code to normalize terms, i.e. bring them to stan-

dard form.

opera.c Code for doing traces, contractions, and tensor
conversions.

optim.c Code to optimize FORTRAN or C output.
parallel.c ParFORM (MPI-independant code).

pattern.c General pattern matching and substitution.
poly.c Code for polynomial arithmetic (experimental).
polynito.c Code for polynomial arithmetic and manipula-

tion.

pre.c The preprocessor.
proces.c The central processor.
ratio.c Partial fractioning and summing functions.

reken.c Code for numerics.
reshuf.c Utility functions for the renumbering of dummy

indices, and for statements like shuffle,
stuffle, multiply.

sch.c Code for the textual output of terms and expres-
sions.

3

setfile.c Code to deal with setup parameters and setup
files.

smart.c Code doing optimized pattern matching.
sort.c Code for the sorting of expressions.

startup.c Start of program (main()). Code for the startup
and shutdown phase of FORM.

store.c Code to read from disk or write to disk terms and
expressions. Also, store file and save file manage-
ment.

symmetr.c Pattern matching for functions with symmetric
properties.

tables.c Code for the tablebases.
threads.c TFORM. Almost all of the TFORM specific

code.
token.c The tokenizer.

tools.c Utility functions to deal with streams, files,
strings, memory management, and timers.

unixfile.c Wrapper functions for UNIX file I/O functions.
wildcard.c Code for wildcards.

2.3 The global structs

FORM keeps its data organized in several global structs. These structs
are defined in structs.h (in the fold A) and come by the names M const,
P const, The various global variables are grouped in these structs
according to their rôle in the program. The fold commentaries give details
on this. M const is for global settings at startup and .clear, for example.

The various structs are collected in the struct AllGlobals. In the case
of sequential FORM, this struct is made into the type ALLGLOBALS, and
in inivar.h, the global variable A is defined having this type. This global
variable A holds all the data defined in the various structs. In variable.h

several macros are defined to simplify (and more importantly unify) the
access to the struct elements. For example, one can access the variable S0

in T const as AT.S0.
With the multi-threaded version TFORM things are a little bit more

complicated, because some data needs to be replicated and made private
for each thread. This kind of data is situated in the structs N const,
R const, and T const. For TFORM, these structs are collected in the struct
AllPrivates (which makes up the type ALLPRIVATES), all other structs go
into the AllGlobals struct. The global variable A now contains only the

4

non-thread specific data. For each thread a AllPrivates struct is dynami-
cally allocated and the global pointer variable (in inivar.h) AB holds their
references. AB is an array of pointers where the index corresponds to the
thread number. The macros defined in variable.h to access the global
struct data are made such that they transparently work with the AB array.
The user doesn’t need to care about these details and can still write as in
the previous example AT.S0. This keeps the code of sequential FORM and
multi-threaded TFORM uniform.

The only small price one has to pay to make this uniform access by
macros possible is to make sure every function in FORM knows in which
thread it is executed. The AN, AR, and AT macros use a variable B, which is set
to the correct entry in AB by one of two ways. First, a function can use the
macro GETIDENTITY (defined in declare.h). In TFORM it calls WhoAmI()
to get the thread number, declares the pointer B, and sets B to point to the
correct entry in AB. In sequential FORM this macro is empty. The second
way is to get the variable B as a parameter from the caller. For this method
the macros PHEAD, PHEAD0, BHEAD, and BHEAD0 exist (defined in ftypes.h),
which can be used in the parameter list of the function declarations. The
variants with a zero differ only by not including a trailing comma, which is
not allowed if no other parameters are following in the declaration. Usually,
PHEAD is used in the declaration (it includes type information), while BHEAD

appears in the calling of functions. Which way to set B is chosen, depends on
the use of the function. The PHEAD method is faster than GETIDENTITY and
should be preferred in functions that are called very often. On the other
hand, GETIDENTITY is more general as it does not rely on every caller to
supply B.

The elements of the structs are of various types. Some types are just
simple macros mapping directly to built-in types (see form3.h) like WORD,
others are names for structs that are defined (mostly) in structs.h. Often,
variables of the same type are grouped together to help the compiler with
alignment. Also, a lot of structs use macros like PADLONG (unix.h or fwin.h)
to pad a struct such that its size is a multiple of a built-in type size. This
again is to help with the data alignment.

Most struct elements have comments that explain their use. These com-
mentaries often include the information where this element was once located
in the old version 2 of FORM (it is the pair of parentheses with or without a
capital letter inside). Pointers come in two flavors: Some pointers reference
a dynamically allocated piece of memory, basically owning this memory.
Others just reference another variable or point into allocated memory. The
first kind is usually marked with [D] for easy identification. These point-

5

ers often need to be treated particularly, e.g. during the snapshot creation,
when recovering, or when shutting down.

During start up (main()), all the memory of these global structs, i.e.
their element variables, is initialized to zero.

2.4 Configuration

The source code evaluates several preprocessor definitions that can be de-
fined by the user. According to these definitions the executable can be
configured in different ways. As a default, the sequential version of FORM
is generated. But if, for example, the preprocessor variable WITHPTHREADS

is defined, the multi-threaded version TFORM will be compiled. These
preprocessor variables can be set when calling the compiler, like

gcc -c -DWITHPTHREADS -o pre.o pre.c

The most commonly considered preprocessor variables are:
WITHPTHREADS, PARALLEL, WITHZLIB, WITHGMP, WITHSORTBOTS, LINUX,
OPTERON, DEBUGGING. The first two change the flavor of the executable:
TFORM or ParFORM. The next two configure whether FORM uses the
zlib library for compression during sorts or the GMP library for arbitrary
precision arithmetics. The next decides whether FORM uses dedicated
sorting threads in TFORM. LINUX specifies that the executable is to be
compiled for a Linux or UNIX compliant operating system. An alternative
here would be to set the variable ALPHA or MYWIN64 instead, but these builds
are less common. OPTERON has to be set if one compiles a 64bit executable.
DEBUGGING enables some features for a non-release debugging version of the
executable (commonly named vorm or tvorm).

When using the autoconf setup, the settings concerning the operating
system, architecture (32/64bit), and flavor of the executable are automat-
ically done right. Additional settings like WITHZLIB can be changed by
manually editing the file config.h, which is included in form3.h.

Version numbers and production date can also be set, but then one either
needs to edit the appropriate lines in form3.h when in a manual compiling
setup, or by editing configure.ac in an autoconf setup.

3 Discussion of a typical FORM run

We discuss in the following what is happening inside FORM when it exe-
cutes a given program. The discussion focuses more on the interplay between
the various parts of FORM and on key concepts of the internal data repre-
sentation than on in-depth details of the code. For the latter, the reader is

6

referred to section 4. This section should for better comprehension be read
with the referenced FORM source files opened aside.

We consider the following exemplary FORM program test.frm (which
we run with the command ”form test”):

1 #define N "3"

2

3 Symbol x, y, z;

4

5 L f = (x+y)^2 - (x+z)^‘N’;

6 L g = f - x;

7

8 Brackets x;

9 Print;

10 .sort

11

12 #do i=2,3

13 Id x?^‘i’ = x;

14 #enddo

15

16 Print +s;

17 .end

The entry function main() is in startup.c. It does various initializa-
tions before it calls the preprocessor PreProcessor(), which actually deals
with the FORM program. The code shows some typical features: Prepro-
cessor macros are frequently used to select code specific to certain configu-
rations. The two most common macros can be seen here: WITHPTHREADS for
a TFORM executable and PARALLEL for a ParFORM executable. Macros
are used to access the global data contained in the variable A, like AX.timeout
for example. The code uses (usually) own functions instead of standard
functions provided by the C library for common tasks. Examples in main()

are strDup1 or MesPrint (replacing printf()). Another very often used
function is Malloc1() replacing malloc(). The reasons are better porta-
bility and the inclusion of special features. Malloc1() for example makes a
custom memory debugger available while MesPrint() knows among other
things how to print encoded expressions from the internal buffers.

The initializations in main() are done in several steps. Some like the
initialization of A with zeros is done directly, most others are done by calls
to dedicated functions. The initializations are split up according to the

7

type of objects involved and the available information at this point. The
command line parameters passed to FORM (none in our example run) are
treated in the function DoTail(). After that, files are opened and also
parsed for addtional settings. Then, as all settings are known, the large part
of the internal data is allocated and initialized. Finally, recovery settings
are checked, threads are started if necessary, timers are started, and variable
initializations that might need to be repeated later (e.g. clear modules) are
done in IniVars().

The call to OpenInput() reads the actual FORM program into memory.
The input is handled in an abstract fashion as character streams. The
stream implementation (tools.c) offers several functions to open, close,
and read from a stream. Streams can be of different types including files,
in-memory data like parts of other streams or dollar variables, as well as
external channels. The access to the characters in all streams though is
nicely uniform. In OpenInput() a stream is representing our input file. Most
of the logic there deals with the jump to the requested module (skipping clear
instructions). It uses the function GetInput() to get the next character
in the stream. Which stream it reads from is determined by the variable
AC.CurrentStream. This global variable in the sub-struct C const of the
ALLGLOBALS variable A is an example of how the different parts of FORM
typically communicate with each other by means of global variables.

Next is the preprocessor. The preprocessor is implemented in the func-
tion PreProcessor() in pre.c. This function consists basically of two
nested for-loops without conditions (for (;;) { ...}). The outer loop
deals with one FORM module for each iteration, the inner loop deals with
one input line. We have certain initializations done before in our example
the code runs into the inner loop, where GetInput() reads our input file.
The variables are all set such that the reading starts from the beginning of
out input file.

The input in variable c is tested for special cases. Whitespaces are
skipped. Comments starting with a star * (unless AP.ComChar is set to
a different character) are also skipped including whole folds. The crucial
check on c is the if-clause that checks it for being a preprocessor command
(#), a module statement (.), or something else which is usually an ordinary
statement.

1 #define N "3"

In our case, we have a preprocessor command in the input. The function
PreProInstruction() is called to read and interpret the rest of the line.

8

The first part deals with the loading of the command in a dedicated buffer.
For the moment, we ignore the details for the special treatment of cases
when we are already inside a if or switch clause in a FORM program. In
our run, the function LoadInstruction(0) is simply called.

LoadInstruction() copies input into the preprocessor instruction buffer.
Three variables govern this buffer: AP.preStart points to the start of the
buffer, AP.preFill to the point where new input can be copied to, and
AP.preStop to (roughly) the end of the buffer. This setup is quite typi-
cal for buffers in FORM. The memory is allocated at the start of FORM.
Later, like at the end of LoadInstruction(), if the buffer gets to small, it
can be replaced by a larger memory patch with the help of utility functions
like DoubleLList(). The contents is copied from the old to the new buffer.
Since this dynamical resizing of buffers needs to be done with most buffers
occationally, most buffers in FORM store data such that it easily allows for
copying, i.e. usually C pointers are avoided and instead numbers represent-
ing offsets are used. Since the preprocessor instruction buffer just contains
characters there is no problem here.

In LoadInstruction() with our input and the mode set to 5 the input is
just copied directly without any special actions taking except for a zero that
is added at the end of the data. PreProInstruction() examines the data in
the preprocessor instruction buffer for special cases, and then does a look-up
in the precommands variable. This is a vector of type KEYWORD which enables
the translation of a string (the command) to a function pointer (the C
function that performs the operations requested by preprocessor command).
FindKeyword() does these translations and the found function pointer is
then dereferenced with the rest of the input in the instruction buffer as an
argument.

The function pointer will point to DoDefine() in our case. DoDefine()
just calls TheDefine() that does the work. The if-clauses for
AP.PreSwitchModes and AP.PreIfStack are present in most of the func-
tions dealing with preprocessor commands. They check whether we are in
a preprocessor if or switch block that is not to be considered, because the
condition didn’t hold. Then, the standard action is to just exit the current
function leaving it with no effect. Since there are preprocessor commands
like #else or #endif this decision can only be taken at this level of the
execution and requires the repeated use of this idiom.

The function scans through possible arguments and the value. In the
value, special characters are interpreted. Ultimately, the preprocessor vari-
able is created and assigned in the called function PutPreVar(). The vari-
able chartype deserves an explanation. One will find it used very often in

9

the C code that does input parsing. chartype is actually a macro standing
in for FG.cTable. This global, statically initialized (in inivar.h) vector
contains a value of every possible ASCII character describing its parsing
type. The parsing type groups different ASCII characters such that the
syntax checking is facilitated, see inivar.h for details.

In PutPreVar() we get into the details of the name administration.
We will just comment on some of the more general features. NumPre and
PreVar are macros to access elements in AP.PreVarList. The type of
AP.PreVarList is LIST. This is a generic type for all kinds of lists and
it is used for many other variables in FORM. A LIST stores list entries in
a piece of dynamically allocated memory that has no defined type (void
*). The utility functions for managing LISTs like FromList() are ignorant
about the actual contents and perform list-specific operations like adding,
removing or resizing a list. An actual entry can be accessed by some pointer
arithmetic and type casting. The PreVar macro contains such a cast to the
type PREVAR which represents a preprocessor variable.

PutPreVar() creates a new list entry for us and basically copies the
contents of the parameter value to the memory allocated to PREVAR’s name.
So, by writing PreVar[0]->name or PreVar[0]->value we could access the
strings N or 3.

In TheDefine() the function Terminate() is used several times. This
function ultimately exits the program, but first tries to clean up things and
print information about the problems causing this program termination.

2

3 Symbol x, y, z;

In our run, we return to the function PreProcessor() and start a new
inner loop iteration that reads a new line. After skipping the empty line
we end up in the else-branch of the big if-clause testing c this time. Here
the major steps are: we check again whether we are in a preprocessor if
or switch, call LoadStatement() to read and prepare the input, and call
CompileStatement() to perform the actions requested by the statement.
Th programs enters the compiler stage.

We also see a call to UngetChar(), which puts back the character that
has been read into the input stream. This is necessary, because
LoadStatement() and CompileStatement() need the complete line for pars-
ing. The variable AP.PreContinuation is used several times. This variable
deals with statements that span several input lines. LoadStatement() can
recognize unfinished statements and sets this variable accordingly.

10

LoadStatement() basically copies the input to the compiler’s input
buffer at AC.iBuffer (which has AC.iPointer and AC.iStop associated to
it). It modifies the copy if necessary. The modification are to replace spaces
by commas or insert commas at teh right spots to separate tokens. The
interpretation steps that are following rely on these synactic conventions.

The call to CompileStatement() is done only if no errors occured and
all lines of a statement have been gathered into the compiler’s input buffer.
CompileStatement() is called with the address of this input buffer and
tries to identify the statement. Like in the preprocessor, the input string
is search in a vector of KEYWORDs (in compiler.c and if found, a function
pointer is dereferenced to the function that actually deals with the com-
mand and its options and arguments. Here, we have actually two vectors
of KEYWORDs, because some statements might be stated in abbreviated form.
The function findcommand() deals with the search. CompileStatement()

does some small extra work, like for example checking the correct order of
statements. In our case, it calls the function CoSymbol(). This functions
is in file name.c, because as a declaration it basically adds something to
the name administration. Functions for other statements can be found in
compcomm.c and compexpr.c.

CoSymbol() loops over the arguments and adds proper variable names
together with their options to the symbols list AC.Symbols and the name
administration (in the call to AddSymbol(). In our case, we have x, y, and z

added. We have already encountered the basic mechanism of how a specific
struct is added to a LIST. The name administration was not explained before,
though.

Symbols can appear in expressions that need to be encoded. The coding
for symbols can simply be its entry index in the list AC.Symbols, but symbols
also need to be recognized when an expression is parsed. Therefore a efficient
look-up mechnism is required. This is achieved by a second data structure
that holds the name strings in a tree for fast searching. The data in the
symbol list does not contain the name string itself, but contains a referece
(a index) into this name string tree. The tree is managed by generalized
functions and types that are also used for other, similiar objects like vectors,
indices, etc. The functions for name trees are located in the first part of the
file name.c. The types NAMENODE and NAMETREE are defined in structs.h.
NAMENODEs are the node of a balanced binary tree. It does not hold the
name string just an index into NAMETREE. The actual data is contained in
NAMETREE that constitute one tree. This type has buffers for the nodes
and for the name strings. This has the benefit of avoiding small malloc
calls for individual nodes. Also, since all referencing is done via offsets into

11

these buffers, a relocation or serialization of such a tree is very easy. In the
struct C const (aka the global AC) several name trees are defined, for dollar
variables, expressions, etc. The symbols added in our example program go
into the nametree referenced by AC.activenames, which is at this point
equal to AC.varnames.

Our program returns to the PreProcessor() and starts parsing the next
lines:

5 L f = (x+y)^2 - (x+z)^‘N’;

6 L g = f - x;

This time the function DoExpr() will get called (via CoLocal()) for
each line to do the parsing. The function DoExpr() first tries to figure
out what type of Local statement we have. In our cases we have an ac-
tual assignment. With the call to GetVar() we check whether a variable
of the same name already exists. The search is done in the nametrees
AC.varnames and AC.exprnames. Since our names are new we don’t find
a previous variable and simply call EntVar(). EntVar() creates an entry
in AC.ExpressionList and puts the name into the AC.exprnames name-
tree. The entry in AC.ExpressionList is of type struct ExPrEsSiOn.
There are more struct elements than in the case of symbols, but the prin-
ciple is the same. Up to now, the right-hand-side (RHS) has not been
looked at and therefore no information about it is saved in the expres-
sion’s entry yet. The connection between the expression’s entry in the
AC.ExpressionList and the data containing the RHS will be made via the
elements prototype and onfile as we will describe soon. The access to ele-
ments in AC.ExpressionList is facilitated by the macro Expressions. The
following code in DoExpr() builds up a so-called prototype and puts the RHS
in encoded form into the buffer system via the call to CompileAlgebra().

FORM uses the allocated memory in AT.WorkSpace for operations like
the generation of terms. This memory stores WORDs and is used in a stack-
like fashion with the help of the pointer AT.WorkPointer. A function can
write to this memory and set AT.WorkPointer beyond the written data to
insure that other functions that are called and might use the workspace as
well do not overwrite this data. It is the responsibility of the function to
reset AT.WorkPointer to its original value again (see variable OldWork in
our case). Every thread in TFORM will have its own private work space.

FORM now uses AT.WorkSpace to build up a data structure that con-
tains everything that needs to be known at a later stage about the expression
that is parsed. The creation and the layout of the data is quite typical. First

12

comes a header that signifies what is coming. Here, it is TYPEEXPRESSION.
Then comes the length of the whole data, i.e. the total number of occupied
WORDs. The actual contents is following, which is a so-called subexpression
that we will discuss soon. The contents is followed by a coefficient and a
zero, which signifies the end of the data.

Coefficients are coded in FORM always in the following manner: Since
coefficients can in general be fractional numbers, we encode an integer nu-
merator and an integer denominator. The integers can have arbitrary length
(limited only by the buffer sizes, see the setup variables MaxNumberSize and
MaxTermSize) and are encoded in WORD-pieces in little-endian convention.
The number of allocated WORDs is always the same for the numerator and
the denominator. The last word of the coefficient contains the size of the
whole coefficient in words. The formal structure of a coefficients is therefore
like this:

NUMERATOR WORDS, DENOMINATOR WORDS, LENGTH.

The integers are always unsigned, i.e. positive. Negative fractions are en-
coded by a negative length. Examples (with 16bit words): 216 + 2 = 65538
gives words 2,1,1,0,5 and −5/2 gives 5, 2,−3.

The data structure in AT.WorkSpace is basically an instruction for the
generator, a central function that does the main work during the execu-
tion of the FORM program, to generate an expression. The content of the
expression is a subexpression. This is a pointer to the real content of the
expression and will be substituted later after the execution. The main rea-
son for this delayed expression insertion is that it can often save a lot of
intermediate operations and data space and thereby speed up FORM. A
case where such a thing can happen is, when an expression is used at differ-
ent places and the different parts are brought together by some operations.
Then, cancellations may occur or terms can be factored out and when the
expressions finally is inserted the workload is less.

In our example run, the data that will later instruct the generator to
create an expression looks in total like this:

TYPEEXPRESSION, SUBEXPSIZE+3, 9, SUBEXPRESSION,
SUBEXPSIZE, 0, 1, AC.cbufnum, 1, 1, 3, 0

We used the macro names as in the actual code. AC.cbufnum is a variable
that is the index of the compile buffer used for this parsed statement. At
the end of the data preparation phase the pointer AT.WorkPointer is set

13

beyond the data on the trailing zero, the pointer AT.ProtoType, which is
used soon in following functions is set to the word SUBEXPRESSION.

The expression will be put into the scratch buffer system. This system
comprises the small and large buffers and the scratch files. Where new
data to the scratch buffers will be stored is of no concern to a function like
DoExpr(), it simply uses several utility functions for that purpose. Still, we
need to initialize the variable pos here that will indicate the position of the
data, i.e. the expression, in the scratch file.

Next, the function CompileAlgebra() is called to parse the right hand
side and put the codified expression into the FORM buffers. It basically
calls two functions: tokenize and CompileSubExpressions. tokenize is
the tokenizer that translates the input character string in a sanitized and
partly interpreted string of codes. It will look up the variables named in the
input string and put the index they have in the name administration into
the tokenized output. Our input string is transformed into the code string
like this

(-13 LPARENTHESIS

x -1 TSYMBOL

5

+ -26 TPLUS

y -1 TSYMBOL

6

) -14 RPARENTHESIS

^ -25 TPOWER

2 -8 TNUMBER

2

- -27 TMINUS

(-13 LPARENTHESIS

x -1 TSYMBOL

5

+ -26 TPLUS

z -1 TSYMBOL

7

) -14 RPARENTHESIS

^ -25 TPOWER

‘N’ -8 TNUMBER

3

-29 TENDOFIT

This code string then lies in the AC.tokens buffer where it is used by

14

subsequent functions.
The function CompileSubExpression() finds terms in an expression

that might be reused at another place and extracts them. As one can see in
the code, the function looks for terms in parentheses and works recursively.
The end of such a term is each time marked with TENDOFIT. Then, the func-
tion CodeGenerator() called at the end of CompileSubExpression() does
the real work.

In our example CodeGenerator() first gets the data

LPARENTHESIS, TSYMBOL, 5, TPLUS, TSYMBOL, 6, TENDOFIT

as a parameter, which is the term x + y. It builds up the actual term
encoding in the workspace and first reserves for that enough space there.
One can see the pointer arithmetic using constants like AM.MaxTal, which
is the maximum number of words a number can occupy. It reserves space
for the coefficient, an integer, and the actual term. Once a token is recog-
nized, the equivalent term data is written to the workspace and the function
CompleteTerm is called. This function completes the data to

8, 1, 4, 5, 1, 1, 1, 3, 0.

The first word is the total length, i.e. 8 words. This is the length of the whole
expression. The second word is the type of the term, which is a symbol. It is
the value SYMBOL as defined in ftypes.h. This macro definition SYMBOL has
the value 1 (in the FORM version at this time this reference is written).
Following the type signifying word is the length of the term, which is 4.
Several such terms could follow each other, but we only have one term at
the moment. Finally, we have the trailing words for the coefficient being 1
and a terminating zero. The meaning and interpretation of the words in the
data of a single term after the type word and the length word are dependent
on the type. For symbols, we have pairs of word, where the first word is
the index of the symbol in the name administration and the second word
is the exponent. Here we have symbol 5 (= x) with an exponent 1. After
CompleteTerm() has constructed the whole expression it copies the data to
the compile buffers with the help of the function AddNtoC().

The compile buffers contain the instruction for the execution engine,
the Processor(), that will start when the .sort command is parsed. Our
terms are put into the right-hand-side buffers in the compile buffer. When
the Processor() will read these buffers one after the other, it will take the
terms and put them into the scratch buffer system. Then, they become the
expressions upon which further statements do act. The compile buffers are

15

stored in the list AC.cbufList and we get access to the elements via the cast
((CBUF *)(AC.cbufList.lijst)). This cast is defined as a preprocessor
macro called cbuf. The element cbuf[0]->numrhs (0 is the current compile
buffer we are using) gives the number of entries in cbuf[0]->rhs, which is
an array of pointer into cbuf[0]->Buffer. We have 3 elements:

cbuf[0]->rhs[1] -->

8, 1, 4, 5, 1, 1, 1, 3, 8, 1, 4, 6, 1, 1, 1, 3, 0

cbuf[0]->rhs[2] -->

8, 1, 4, 5, 1, 1, 1, 3, 8, 1, 4, 7, 1, 1, 1, 3, 0

cbuf[0]->rhs[3] -->

9, 6, 5, 1, 2, 0, 1, 1, 3, 9, 6, 5, 2, 3, 0, 1, 1, -3, 0

cbuf[0]->rhs[0] is not used and the data lies consecutively in
cbuf[0]->Buffer. The meaning of the first two entries has already been
explained. These are expressions containing x + y and x + z, respectively.
The last expression uses subexpressions that have the type SUBEXPRESSION

= 6. The length of a subexpression is 5 and the contents 1, 2, 0 means that
expression 1 needs to be inserted with an exponent of 2. The zero is a
dirty flag that signals to the processor the state of the subexpression. Here
in the compile buffers it is simply cleared to zero. The contents 2, 3, 0 of
the second subexpression should be obvious. Finally, we have an negative
coefficient for the second subexpression which accounts for the minus sign
between the parentheses in our original expression.

We return to the function DoExpr() where the prototype of the expres-
sion is put into the scratch system via the call PutOut() and we are finished
with this line in the input file. The next line defining a second local expres-
sion works the same.

We come to the parsing of the following statements:

7

8 Brackets x;

9 Print;

The bracket statement is dealt with in function DoBrackets(). It sets
the flag AR.BracketOn to 1 and constructs the term that will stand outside
the bracket. This term is copied into the AT.BrackBuf buffer, where it can
be used by the execution engine when it needs to insert this heading term
into an expression.

The print statement is parsed in function DoPrint(). Since we don’t
have any arguments to Print all active expressions shall be printed. DoPrint()

16

just loops through the Expressions list and sets the printflag to 1 for each
expression.

With the next statement in our input file

10 .sort

we will get to know the other central parts of FORM: the proces-
sor and the sorting routines. The code in the PreProcessor() will call
ExecModule() which calls DoExecute(). We can ignore a lot of code there
that is only for parallelized versions of FORM. There are three important
functions calls happening. First, RevertScratch() is called. FORM uses
three scratch buffers: input buffer, output buffer, and the hide buffer. The
usual mode of operation is to apply statements on expressions in the input
buffer, sort and normalize the result, and write it into the output buffer.
This repeats for every executing module and therefore an important opti-
mization is made: the input buffer and the output buffer simply change their
roles. RevertScratch() does this job. The second and third important calls
are to Processor() and WriteAll().

Processor() is, as the name suggests, the main processor that executes
statements and deals with the results. A lot of initialization work is done
before we go into the large loop over the expressions that spans almost
the whole function. Our expressions have as regular expressions from the
scratch buffers the inmem flag set to zero, so we go into the else branch of
the checking if-clause. There we go to the case of a LOCALEXPRESSION. The
main logic here is to do a single call to GetTerm() to get the first term from
the input file and copy that to the output with the call to PutOut(). This
first term, which is a subexpression, serves as a header for the expression. It
follows a (while-)loop that calls GetTerm(), and if there are still terms, the
loop executes its body and calls Generator(). After this loop, some clean-
up and a final EndSort() is done, before the outer loop over the expressions
repeats. Generator() is the function where the read input, which is 9, 6,
5, 3, 1, 0, 1, 1, 3, will be substituted and expanded.

Generator() gets the term in the workspace and first tries to do all
substitutions (SUBEXPRESSION), then applies the statements in the compile
buffers to the normalized terms, substitutes again if necessary, do brackets,
and finally sorts the result.

The call to TestSub() does the search for subexpressions. TestSub()

will find a subexpression in our case and return the number (3) of this
subexpression and set other global variables ready for the following steps.
In Generator() we enter therefore the if-clause checking replac> 0. De-
pending on the power of the subexpression different operations are taken.

17

We have our subexpression to the power one only, which is an easy case.
The actual substitution is performed by the function InsertTerm(). Since
the new term might again contain subexpressions we do a recursive call
to Generator(). Our expression contains several layers of subexpressions
which are all dealt with as described above. Only the powers of the other
subexpressions are different from one, so we get slightly more work to be
done which involves the expansion of the terms using binomials.

Finally, the call to TestSub() at the beginning of Generator() will
return zero. The function Normalize() is called, which puts the terms
in a canonical form, i.e. terms are ordered and collected with the correct
coefficient. In our example, as the first fully subsituted term we have 12, 1,
4, 6, 1, 1, 4, 6, 1, 1, 1, 3 before the call to Normalize(), which means we
have a term x ∗ x. Normalize() makes this into 8, 1, 4, 6, 2, 1, 1, 3, which
is x2.

Then, we loop over the statements in the compile buffer. level is the
instruction counter. We have a long switch-clause that interprets the state-
ment type identifiers like TYPECOUNT. Statements with TYPEEXPRESSION are
not treated here. So we loop over all the compile buffer statements here and
only call TestMatch() at the loop’s end. This function has no effect in our
example, because we have no pattern matching going on.

Then, the function PutBracket() is called to deal with brackets. Brack-
ets are implemented by putting the special code HAAKJE inside the expres-
sion. The terms before the HAAKJE are outside the bracket, everything fol-
lowing it will be inside the bracket.

At the end of the loop over the terms in the expressions, the function
StoreTerm() is called. This function puts the result of the processing in the
output scratch buffers. Finally, we return to Processor(). There the final
sorting is started. Also, the printing of the expressions is done here.

The parsing in PreProcessor() continues with

11

12 #do i=2,3

13 Id x?^‘i’ = x;

14 #enddo

Here we have a somewhat more complicated example of preprocessor
instructions. The do-loop is treated in DoDo() which sets up data struc-
tures (DOLOOP) to guide the preprocessor when it is parsing the loop body.
The statement line will then be presented to the compiler two times and
with the correct values of the preprocessor variable i. The compiler deals

18

with this statement in CoId() which is just calling CoIdExpression().
CoIdExpression() puts a TYPEIDNEW code into the lhs compile buffer. This
tells the processor later how to do the pattern matching. The rhs is the
term x that will be inserted.

The parsing continues and ends with

15

16 Print +s;

17 .end

The way these statements are treated and how the program is executed
has already been described. The pattern matching is something that has
not occurred before, though. We will not describe it here, since there is a
dedicated section in this manual for that. After the final sorting, FORM
will clean up tempory files and other resources that are not automatically
freed by the operating system before FORM ends itself.

4 Specific topics

4.1 Pattern matching

to be written

4.2 The problem of dummy indices

FORM has a indices that can be automatically renumbered. With this we
mean that when we have an expression like

f(i)*g(i)*h(j)*k(j)-f(j)*g(j)*h(i)*k(i)

we can say

Sum i,j;

and FORM will change the expression into

f(N1_?)*g(N1_?)*h(N2_?)*k(N2_?)-f(N2_?)*g(N2_?)*h(N1_?)*k(N1_?)

in which Ni ? are internal indices.
These internal indices follow a number of rules:

19

1. their numbers (AC.CurDum) start at AM.IndDum, which again starts at
AM.DumInd+WILDOFFSET and AM.DumInd starts at AM.OffsetIndex +

2*WILDOFFSET. Hence AC.CurDum starts at AM.OffsetIndex +

3*WILDOFFSET. Because we need this extra space WILDOFFSET cannot
be too large and this limits the number of indices that is allowed.

2. The dimension of the dummy indices is equal to the default dimension.

3. The internal (dummy) indices can be renamed at any time in order
to create uniquely minimal terms. In the above expression that would
mean that the second term would be ’rearranged’ into

f(N2_?)*g(N2_?)*h(N1_?)*k(N1_?) -->

f(N1_?)*g(N1_?)*h(N2_?)*k(N2_?)

and the expression becomes zero.

There are problems with this concept.

1. Multiplying expressions with dummy indices could give a repetition
of the same indices as in (f(N1 ?)*g(N1 ?))^3. This has been solved
partially as can be seen with the following program:

CF f,g;

L F = (f(N1_?)*g(N1_?))^3;

L G = f(N1_?)*g(N1_?);

.sort

L G3 = G^3;

Print;

.end

The routine that takes care of the proper shifts in dummy numbers is
MoveDummies(). As one can see from the example, the SUBEXPRESSION
to a power isn’t treated this way. It would have a serious impact on
the speed. With the G^3 it is different because that is slower to begin
with.

2. Keep Brackets is extremely dangerous. The problem here is

f(N1_?)*(g(N1_?)*h(N2_?)*k(N2_?)+g(N2_?)*h(N1_?)*k(N2_?))

20

What is inside the brackets is invisible during the module. Hence a
renumbering that involves f(N1 ?) only can change N1 ? into N2?

(FORM doesn’t know there is already a N2 ?) and anyway, the corre-
sponding N1 ? remains as it is. It means that there are complicatetions
with Sum, Trace4 and things like id p = f(?); which can generate
dummy indices.

The second problem requires some action.

A When Keep Brackets is active, renumbering should not be allowed,
until the contents are multiplied with the outside of the brackets.

B The multiplying with the contents of the bracket should follow the
same procedure as the multiplication with a complete expression
(MoveDummies()).

C Introduction of new dummy indices should be above AM.IndDum +

WILDOFFSET/2. These should vanish when the term is renumbered
after multiplying the outside of the bracket with the inside.

Trace4 involves the creation of dummy indices, but these vanish again
without renumbering. Hence they don’t cause problems.

In order to implement A-C we have to have a good look at all routines
that use AR.CurDum and call ReNumber() or DetCurDum().

4.3 Values of indices (and vectors)

The indices and vectors share common use. That means that vectors can
occur in the places that are reserved for indices. In addition we have various
types of indices. Hence it is important to know what range of values in an
index location refers to what.

1. Special values:

GAMMA1 0 Dirac unit matrix
GAMMA5 -1 Dirac gamma 5 (only defined in 4 dimensions)
GAMMA6 -2 Dirac (1+gamma5) (only defined in 4 dimen-

sions)
GAMMA7 -3 Dirac (1-gamma5) (only defined in 4 dimen-

sions)

The above 4 indices are to be used only inside the function g .

21

FUNNYVEC -4 Used in replace to indicate a vec-
tor with an unspecified index. Hence
VECTOR,4,numvec,FUNNYVEC instead of
INDEX,3,numvec.

FUNNYWILD -5 Used to indicate an argument field wildcard
like ?a inside a tensor.

SUMMEDIND -6 Used in DELTA to indicate d (mu,mu)-4 as gen-
erated in traces.

NOINDEX -7 Used by ExecArg() in splitting a multi-delta
or multi-index. Taking out one to make a new
argument we leave the old one with two or one
empty spots.

FUNNYDOLLAR -8 Used to indicate a dollar variable inside a ten-
sor.

EMPTYINDEX -9 Used in the bracket statement to indicate a
d . Because d isn’t a regular function we can-
not use the function notation and it needs two
arguments.

MINSPEC -10

MINSPEC must be smaller than all the other special values.

2. Fixed indices. They are in the range of 1 to AM.OffsetIndex-1.

3. Vectors are in the range from
AM.OffsetVector = -2*WILDOFFSET+MINSPEC;

to
AM.OffsetVector + WILDOFFSET

4. Wildcard vectors are in the range
AM.OffsetVector + WILDOFFSET

to
AM.OffsetVector + 2*WILDOFFSET

5. Regular indices are in the range from
AM.OffsetIndex to AM.OffsetIndex + WILDOFFSET

6. Wildcard indices are in the range
AM.OffsetIndex + WILDOFFSET (=AM.WilInd)

to
AM.OffsetIndex + 2*WILDOFFSET (=AM.DumInd)

22

7. Unused in the range of
AM.OffsetIndex + 2*WILDOFFSET (=AM.DumInd)

to
AM.OffsetIndex + 3*WILDOFFSET (=AM.IndDum)

8. Summed indices (Ni ?) are in the range of
AM.OffsetIndex + 3*WILDOFFSET (=AM.IndDum) to
AM.OffsetIndex + 4*WILDOFFSET

9. Unused in the range of
AM.OffsetIndex + 4*WILDOFFSET

to
AM.OffsetIndex + 5*WILDOFFSET (=AM.mTraceDum)

10. Summed indices as generated by the trace routines are above
AM.OffsetIndex + 5*WILDOFFSET (=AM.mTraceDum)

Note (JV): I am not sure why there are unused regions. I must have had
a reason for them, but I have forgotten about it (it was more than 20 years
ago). And then, maybe it is used somewhere in a totally untransparent way.

Note 2 (JV): It was good to make this list. It turned out that in several
places the code that checks for wildcard indices was only limited from below,
not from above. It would of course be very rare to run into trouble with
this, but it is better to have the code formally correct. One never knows.
This was particularly the case in FindRest() (in findpat.c). There may
be more. It is best to repair this, whenever encountered.

From the above it should be clear that on a 32-bits computer
5*WILDOFFSET+AM.OffsetIndex+nTraceDummies < 2^15

in which nTraceDummies is the number of dummies that can be introduced
when taking a 4-dimensional trace.

If we assume that we will not take traces of more than 200 gamma matri-
ces (each with a different index, because otherwise there are contractions)
nTraceDummies will be at most 100. AM.OffsetIndex is by default 128.
The value that we selected for WILDOFFSET is 6100 which allows a maximum
value of 2167 for AM.OffsetIndex.

5 The test suite

The subdirectory check contains a test suite for FORM. Using the autoconf
facilities the checks can be started with the command make check. Other-
wise, one can issue the command ruby form.rb in the check directory.

23

The test suite is written in the language Ruby1. Ruby itself already
offers a unit testing framework and this is used with as minimal as possible
extensions to make the creation of test cases for FORM programs easy.
All the extensions to the built-in Ruby testing framework (Test::Unit) are
contained in the file form.rb. This file also contains code to load test cases
from other *.rb files in the check directory. Therefore all test cases are
contained in appropriately named *.rb files. The makefile’s purpose is to
integrate the call ruby form.rb into the autoconf system.

Side note: The choice to use Ruby and its built-in test framework was
taken for several reasons: It makes sense to use or adapt already existing
testing frameworks in order to keep the extra cost of maintenance as low as
possible for the FORM programmers. There are numerous systems available
on the market, some are part of a language runtime environment (libraries),
and some are dedicated programs with a custom configuration language.
Since the tests for FORM programs center mainly about text processing,
i.e. comparing the textual FORM output to a correct answer, we need
powerful text processing facilities like pattern matching. But we also need
file operations and information from the operating system to check the run
of a FORM program, eventually. All this is readily available in the testing
frameworks of scripting languages, like Ruby, Python, or Tcl. Ruby was
ultimately chosen, because the mixing of FORM code with the steering
scripting language code looked nicest, and the small amount of extra (Ruby)
syntax necessary makes it convenient to add new test cases.

A new test case can be implemented in the following way. First of all,
we need a FORM program that is to be run. It might be a program that
exhibits an actual bug in (a previous version of) FORM or that contains
generic code that should be guaranteed to work, also in coming releases of
FORM. It might also be code that deliberately crashes FORM or causes
other errors, like syntax errors, if this behavior of FORM is to be assumed.
Usually, the FORM program is rather short or can be made such. In this
case, we are going to mix the Ruby and the FORM code in one file. Al-
ternatively, the FORM program can also be kept in a separate file. This
option will be discussed later.

Now, either one choses an existing *.rb file (not form.rb) or starts a
new one. The name of the file should fit the test case scenario. In this file
we need to define a Ruby class that will contain our FORM code as well as
the checks (assertions) we want to impose on the run.

The generic frame of this test case definition looks like this:

1http://www.ruby-lang.org

24

class [Test name] < FormTest

def setup

[Setup code, usually this includes the FORM program code]

end

def test1

[Execution code, and the assertion and testing code]

end

end

The text in the brackets [] needs to be filled with our specific code.
The details of the Ruby code itself will be explained later. For a start, it is
usually advisable just to copy an existing test case and modify it.

Every class defined in this way will be used for the testing. First, Ruby
will run the code in the class method setup, and then it runs test1.

A complete test might look like this:

class SymbolIdTest < FormTest

def setup

input <<-EOF

S x, y;

L f = (x+y)^100;

id x = y;

print;

.end

EOF

end

def test1

execute FORM

assert no_problem

assert result("f") =~

pattern("1267650600228229401496703205376*y^100;")

end

end

We have chose the name SymbolIdTest for our class. We defined the
FORM program in-line with a so called here document (<<-EOF ... EOF).
We do run the FORM executable. Alternatives would be TFORM, for
example. The assertions we have are that no problem occurred, i.e. no
syntax error, no runtime error, or similar things. We also check the output
of our FORM program. We compare via pattern matching the result of the

25

expression f with the correct answer. The function result() extracts the
appropriate line from the output, =~ is the pattern matching operator in
Ruby, and the function pattern() prepares special characters like the caret
(ˆ) for the pattern matcher.

Next time we run the test suite, our test will be run as well. If no
assertions are violated, we will only see the number of successful tests and
assertions increased in the summary output.

Even though the extra Ruby syntax is kept to a minimum and is rather
straightforward, some remarks about the Ruby language are useful here.
Classes are defined by the keyword class, and methods (or functions) are
declared with the keyword def. These definitions are always ended with
the keyword end. FormTest is a class defined in form.rb that contains all
the special code for FORM test and that is derived from the built-in Ruby
test case class TestCase. For every test case we derive again from this class
(class B < A says that B is derived from A). We don’t need semicolons to
end a line and indentation is arbitrary. Class names should be capitalized. In
Ruby, parentheses around the arguments of functions can often be omitted.
We use this possibility when we call the functions input, execute, and
assert. We could have written execute(FORM) as well, for example. The
here document (<<-EOF ... EOF) can also use other markers instead of
EOF, of course. The minus sign before EOF allows the end marker to be
indented. Comments are started with a #.

One class can actually contain more than one test. The testing frame-
work will call the method setup and then a method whose name starts with
test (Note: in newer versions of Ruby the name could be just test, but
older versions (≥1.8.x) require at least one following extra character). If
there are more methods starting with test, each will be called and for each
setup will be called first.

In setup we need to prepare everything for the execution of FORM. We
can either use input to in-line the source directly, or we can use input file

with a string as an argument to reference an external file, e.g.

input_file "parsebug.frm"

The function input will create a temporary FORM file for the contents.
The name of the file is defined in form.rb. The executable will later be
run with the given name or the name of the temporary file as an argument.
If additional arguments need to be given to the executable, the function
extra parameter can be used, like e.g.

extra_parameter "-w4 -l"

26

Sometimes one might need to prepare more things for a FORM run,
like setting up certain files or starting an external program. This needs to
be done by ordinary Ruby code. For this, some more of the Ruby language
needs to be known by the user.

In the class methods with a name starting with test we put the code to
run the FORM executable and to test the outcome. Usually, the first line
will be the call to the executable itself, either

execute FORM

or

execute TFORM

(ParFORM is not supported yet). The function execute will run the exe-
cutable with the necessary or requested arguments, but it will run it under
the supervision of the strace system utility. Therefore strace needs to be
present on the system (options to enable or disable the use of strace will
probably be added in the future). strace is used to get detailed informa-
tion about the return value or possible failure states of the executable. The
output of strace will be saved in a temporary file and made available to
the test case programmer in a Ruby variable. The regular output and the
error channel output will be available in Ruby variables as well.

The Ruby variables containing the output are @strace out, @stdout,
and @stderr (the leading @-sign is Ruby syntax for specifying instance
variables, i.e. variables belonging to a certain object). These variables are
the primary source for doing tests. In principle, these variables can be
investigated directly, for example via pattern matching like

if @strace_out =~ /Segmentation fault/

...

end

which checks whether a segmentation fault has occurred (the slashes in Ruby
define a pattern). But for the most common cases some test functions exist
that encapsulate necessary pattern matching details. These functions return
true or false values which can be used as arguments to the assert function.
The assert function raises an error if the argument is false.

Available tests functions are:

27

crash true if a crash (segmentation fault) occurred
warning true if FORM has issued a warning
compile error true if FORM has found a syntax error
runtime error true if FORM has terminated prematurely
error true if compile error or runtime error is

true or the standard error channel contains
data

problem true if warning or error or crash is true
Additionally, the logical opposite of each function exists with a name

starting with no , like no problem or no crash.
There is also the function return value which gives the return value of

the FORM program as an integer, so one could do a check like

assert return_value == 66

If pattern matching is coded directly, like in our example, some details
have to be considered. The operator =~ will try to match a string with a
pattern. The variables like @stdout are actually strings (they do contain the
carriage return and/or line feed for multi-line output). Patterns in Ruby are
written between slashes and various characters are interpreted in a special
way (following the widely used regex-syntax).

There are four functions to facilitate things: result(), pattern(),
exact result(), and exact pattern(). result() takes a string being
the name of an expression and returns a string that only contains the lines
belonging to the last output of this expression. If it is not the last out-
put of an expression that is wished for, a second numeric parameter can be
given that specifies the index of the output (counting starts at 0). While
result() removes all line breaks and whitespaces, exact result() leaves
them in place. pattern() transforms special characters in the given string,
removes whitespaces and line breaks, and returns the string as a pattern.
Since FORM expressions usually contain a lot of special characters like +,
*, ., etc. they cannot not be simply used in a pattern. pattern() trans-
forms these characters automatically into the correct regex equivalent, e.g.
+ becomes \+. With it, a FORM expression can be directly given as an
argument and used in a pattern matching (see example). exact pattern()

does not treat whitespaces and line breaks in a special way as pattern()

does and can therefore be used when a exact comparison is required (if for
example a bug in the output functions of FORM had caused some whites-
pace or line breaks to be missing and a test case were required to check for
this behavior).

28

If one doesn’t want or cannot use the assert function, one can signal a
test failure to the testing framework by raising an AssertionFailedError

directly, like for example

if return_value != 2

raise AssertionFailedError.new("return value is wrong!")

end

Suppose a FORM program should have deleted some file (#remove), one
could implement the following test

if File.exist?("thenameofthefile")

raise AssertionFailedError.new("File still exists!")

end

The testing framework actually not only calls setup and each test

method but also a method called teardown. This method is responsible
for cleaning up things at the end of each test run. The class FormTest pro-
vides such a teardown method that will be inherited by the users test case
class unless it is overwritten. It calls the method remove files to delete
all temporary files that have been created so far. remove files can be
called by the user directly. If teardown is to be replaced by a specific imple-
mentation, it is advisable to still call FormTest’s teardown (using Ruby’s
command super), like for example

...

def teardown

super

File.delete("extra.log")

end

...

At last, a complete example as it is actually contained in the repository.

#[SparseTable1 :

=begin

Bugs reported 2004-04-06 by Misha Tentukov

PrintTable and FillExpression did not work with non-sparse tables

Fixed 2005-09-27

=end

class SparseTable1 < FormTest

def setup

input <<-EOF

cf f;

s x;

ctable Tab(1:‘TableSize’);

ctable TabNew(1:‘TableSize’);

29

#do i=1,‘TableSize’,1

Fill Tab(‘i’)=f(‘i’);

.sort

#enddo

* BUG1 (not all elements are printed):

PrintTable Tab;

bracket x;

.sort

L expr1=table_(Tab,x);

print;

.sort

bracket x;

.sort

* BUG 2 (seems only TabNew(1) is ok - further everything is broken):

Fillexpression TabNew=expr1(x);

.sort

#do i=1,‘TableSize’

L e‘i’=TabNew(‘i’);

#enddo

print;

.sort

.end

EOF

extra_parameter "-D TableSize=10"

end

def test1

execute FORM

assert no_problem

assert result("expr1") =~ pattern(<<-EOF

f(1)*x + f(2)*x^2 + f(3)*x^3 + f(4)*x^4 + f(5)*x^5 + f(6)*x^6 + f(7)*x^7

+ f(8)*x^8 + f(9)*x^9 + f(10)*x^10;

EOF

)

assert result("e10") =~ /\s+f\(10\);/

end

end

#] SparseTable1 :

Some remarks. Folds are used (to structure a long file). =begin and
=end define a commentary block. Here useful information are given about
the bug that triggered the test case. The input is not modified compared
to the original FORM program, it is just directly pasted into this Ruby
file. We use extra parameter to define a preprocessor variable for the
run. We check expr1 to a multi-line reference. Since we use pattern()

(instead of exact pattern()), we can be sloppy about the indentation and
the whitespaces. The expression e10 is matched to a pattern done ”by
hand” instead (just to show the principle). For such a test case, where

30

we are mostly interested about the correctness of the calculation, the first
assertion (assert no problem) is a standard.

6 CVS

The CVS repository resides in /user/form/cvs repository. It is advisable
to set the enviroment variable CVSROOT accordingly, like (using bash shell
syntax)

export CVSROOT=:ext:myusername@mytrustedmachine.nikhef.nl:/user/form/cvs_repository

A mailing list exists for CVS commits. The administration interface for
this mailing list can be found under the web address

https://mailman.nikhef.nl/cgi-bin/admin/form-cvs

A password is required.
Click Membership Management and then Mass Subscription to add new

people. The personal details of the subscribers like the email address or the
name can be changed under Membership Management as well.

The triggering of the CVS commits mails is done in the following way. In
the file loginfo in the directory CVSROOT (inside the repository) the default
action for logging is set such that the script /user/form/cvs-log.sh will
be called with the committer’s user name and the CVS mailing list user
name. The shell script does some simple message transformation and then
uses the command mail to send the commit mail to the mailing list.

6.1 Some useful CVS idioms

To just show what would be updated/changed without actually modifiying
anything, use

cvs -n update

If cvs -n update has shown you that something new in the repository
will be merged into your directory and you want to know in advance what
the details are, you can do for each of the files involved a

cvs status <filename>

and note the version number of your local file, and then do a

cvs diff -r <versionnumber> <filename>

to see the differences.
In case you want to compile an older version of FORM (maybe to find

out whether a certain bug is already present or not), do

31

cvs update -D "<DATE>"

to checkout the sources as they were on a certain date, e.g.
cvs update -D "2006-05-12". The files will get the so-called sticky flag,
which do prevent simple cvs update commands in the future to update to
the latest version from the repository. To remove the sticky flag on a file
use

cvs update -A <filename>

Without the filename all files will have the sticky flag removed.

32

	Initial remarks
	Overview of the source code
	The header files
	The source files
	The global structs
	Configuration

	Discussion of a typical FORM run
	Specific topics
	Pattern matching
	The problem of dummy indices
	Values of indices (and vectors)

	The test suite
	CVS
	Some useful CVS idioms

