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I. INTRODUCTION

The variant quality model is used in both HaplotypeCaller and GenotypeGVCFs. In HaplotypeCaller the model
is applied we have decided which alleles to consider and calculated the likelihoods of each possible genotype. In
GenotypeGVCFs the model is applied after merging input GVCFs and harmonizing their allele representations, and
the resulting score is used to decide which variants to emit. Let `sg ≡ P (readss|g) be the likelihood of genotype g in
sample s. Then a simple model for the genotypes and observed reads is

P (reads, z) =
∏
s

P (zs)
∏
g

`zsg
sg , (1)

where zsg is a binary indicator variable for sample s exhibiting genotype g. We can represent P (zs) in terms of a
latent vector π of population allele frequencies. Assuming independent alleles, the probability P (zs|π) of a genotype
g containing nga copies of allele a (i.e. for tetraploid genotype AABC, nA = 2, nB = nC = 1) is

P (zs|π) =
∏
g

[
Cg
∏
a

(πa)nga

]zsg

, (2)

where Cg = ploidy!/ (
∏
a nga!) is the number of phased genotypes corresponding to unphased genotype g. For example,

CAAB = 3 because AAB, ABA, and BAA are distinct phased genotypes, while CAAA = 1.
Because sites vary in their allele frequencies, π is not a constant. Rather, it is a random variable whose prior

distribution should have the correct mean alt allele frequency (roughly 1 in 1000 for SNPs) and roughly the correct
standard deviation. That is, the prior probabilities that a site has a rare alt with, say πB = 10−5 or a common alt
with πB = 0.25 should match the empirical distribution of allele frequencies. Note that the old model essentially
assumed that every site had an alt allele with a constant allele frequency of 1/1000. We can achieve this by setting
π ∼ Dir(α), where α is a vector with one component per allele, and αa is a prior pseudocount for allele a. We can set
these pseudocounts separately for the ref allele, SNPs, and indels1 to obtain the desired mean and standard deviation
of allele frequencies. Unlike previous approaches which shoehorned multiallelic sites into biallelic model, this method
extends naturally to multiallelic sites. Since α is not a random variable we can ignore the normalization constant of
the Dirichlet, which depends only on α, to obtain P (π|α) ∝

∏
a π

αa
a . This, combined with Equations 1 and 2, gives

the joint posterior distribution

P (π, z) ∝
(∏

a

παa
a

)∏
sg

[
Cg`sg

∏
a

πnga
a

]zsg

(3)

We perform mean-field variational Bayesian inference on this posterior. In this framework we posit a factorized
approximation: P (π, z) ≈ q(π)q(z) and iterate, alternating between the following two updates:

q(π) ∝ expEq(z)[lnP (π, z)] ∝
∏
a

π
αa+
∑

sg
E[zsg ]nga

a (4)

q(z) ∝ expEq(π)[lnP (π, z)] ∝
∏
g

[
Cg`sg

∏
a

eE[lnπa]nga

]zsg

(5)
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1 In principle we could have a complicated model for prior pseudocounts depending on context. Furthermore, if we have a big call set

like gnomAD, the best prior pseudocounts are simply the allele counts from that call set. HaplotypeCaller and GenotypeGVCFs do not
currently exploit gnomAD for this.
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The expectations required have analytic expressions. Using a well-known (i.e. see the Wikipedia entry for Dirichlet
distribution) result:

Eq(π)[ln πa] =ψ(αa +
∑
sg

E[zsg]nga)− ψ(
∑
a

αa +
∑
sg

E[zsg]
∑
a

nga) (6)

=ψ(αa +
∑
sg

E[zsg]nga)− ψ(
∑
a

αa + total ploidy of all samples), (7)

where ψ is the digamma function, and

Eq(z)[zsg] =
Cg`sg

∏
a e

E[lnπa]nga

normalizing constant , (8)

where the constant of normalization is chosen so that
∑
g Eq(z)[zsg] = 1. Learning this model is just a matter of

iterating Equations 4 and 5.
Once our iteration converges, we can extract several interesting things, some of which we already report and some

of which we do not. First, we have the Dirichlet posterior q(π) on allele frequencies. Letting Na ≡ αa+
∑
sg E[zsg]nga

be the prior plus observed pseudocounts for allele a, we have

π ∼ Dir(N0, N1 . . .) (9)

If we want a univariate allele frequency for a single allele (i.e. not the joint Dirichlet posterior on all allele frequencies)
we simply marginalize, which is arithmetically easy:

πa ∼ Beta(Na,
∑
a′ 6=a

Na′) (10)

From this we can get the mean posterior allele frequency, which is π̄a = Na/
∑
a′ Na, but we also have error bars on

this estimate.
We can also obtain the variant quality score trivially. The probability that no variant exists among the samples is

(we use the convention that g = 0 for the hom ref genotype)

P (no variants) =
∏
s

P (zsg = 0) =
∏
s

Eq(z)[zs,g=0] (11)

We can easily extend this to a per-allele variant quality score by considering not just the hom ref genotype, but all
genotypes in which that allele is absent:

P (no allele a) =
∏
s

 ∑
g:nga=0

Eq(z)[zs,g]

 (12)

Let’s now consider the run time of this algorithm. Suppose there are S samples, G genotypes, and A alleles. The
cost of calculating Equation 7 for all values of a is O(SGA). The cost of calculating Equation 8 for all s and g is
also O(SGA). These things usually converge in not too many iterations so we have an O(SGA) algorithm that yields
genotype calls, genotype quals (these are the posteriors E[zsg]), allele frequencies, per-site variant quality scores, and
per-allele variant quality scores. The algorithm has two equations to learn the model and one equation to translate
that into a variant quality score.


