
Local Assembly in HaplotypeCaller and Mutect

David Benjamin∗†
Broad Institute, 75 Ames Street, Cambridge, MA 02142

(Dated: December 2, 2018)

The GATK tools HaplotypeCaller and Mutect assemble reads aligned within a window of several
hundred base pairs into an assembly graph of local variation. Local haplotypes correspond to paths
in this graph, and the downstream likelihood calculations in both tools involve aligning reads to
these haplotypes. Here we describe how this graph is generated.

I. CORRECTING READS

Read error correction is turned off by default in HaplotypeCaller and Mutect and we are not familiar with it,
nor have we validated it. Nonetheless, the code exists and can be turned on. The idea is as follows: large kmers
are good because they contain more phasing information and therefore yield a simpler assembly graph. For example,
two SNVs 20 bases apart with sequenced with error-free reads yield a graph with 2 × 2 = 4 paths if k = 10 but
only 2 paths if k = 40, because the latter spans the phased SNVs. For example, consider a reference sequence
TGAAACGTATTTGGG and an alt sequence with two phased SNVs, TGAAA(C→T)GTA(T→C)TTGGG. If k = 3
no kmer spans both SNVs and so the assembly graph containing two bubbles, one for each SNV, as in Figure 1. If
k = 5, a kmer spans both SNVs and thus only two paths exist in the assembly graph, as in Figure 2.

One drawback is that larger kmers are more liable to be lost due to sequencing error simply because they contain
more bases1. The idea of read error correction is to rescue kmers from the occasional error.

First, the ReadErrorCorrector kmerizes every read and counts the occurrences of each kmer. Then it builds a
map from kmers to their corrected versions where kmers that appear often2 map to themselves and kmers that appear
only once3 map to their nearest neighbor in Hamming distance4 within a maximum of two mismatches5. Kmers that
appear between 1 and 20 times are not part of the correction map.

Then, for every base in every read, the ReadErrorCorrector queries the kmer correction map for each overlapping
kmer. For example, to correct the fourth base of read ACGTATTC if k = 3, it looks at the corrections for CGT, GTA,
and TAT at their third, second, and first positions, respectively. If and only if the corrections are unanimous, the
base is corrected. Note that corrected reads are used only for assembly and the original reads are used downstream.

II. BUILDING THE GRAPH

Before we discuss how to construct the graph, let us confess a slight abuse of terminology. We refer to our assembly
graph as a de Bruijn graph, that is, a graph in which the vertices are kmers and two kmers have a directed edge

FIG. 1: Two haplotypes yielding assembly graph with two bubbles and four paths due to too-small k.

∗ The author took no part in development of the methods described below – credit belongs to several others on the GATK team.
†Electronic address: davidben@broadinstitute.org
1 Another drawback is that longer kmers yield more dangling heads and tails in the graph (see below), especially near the ends of baited

regions in exome sequencing.
2 By default, 20 times or more. This threshold is set by the minObservationsForKmerToBeSolid command line argument.
3 This is a hardcoded threshold.
4 For simplicity we consider only substitution errors, eg the distance between ACGGT and AGGTG is 3
5 This is a hardcoded threshold.



2

FIG. 2: Two haplotypes yielding assembly graph with a single bubble when k is sufficient to phase variants.

whenever they appear consecutively in a read. This is almost true (until the last part of assembly when we convert
the graph into a more compact sequence graph), but there are a few differences:

• The edges of our graph record their multiplicity, the number of times the kmers they connect occur consecutively.

• The kmers of our graph come not just from reads but also the reference haplotype and, in GGA mode (see
below), haplotypes generates from the given alleles.

• A non-unique kmer (see below) may be associated with multiple vertices.

Next, the ReadThreadingAssembler assembles the (corrected) reads over several different kmer sizes specified by
the kmerSize argument6. If the given kmer sizes fail to produce a graph without cycles, or if more than 1/5 of the
kmers in the graph are not unique in the sequences from which they come7, the ReadThreadingAssembler repeatedly
increases k by 10 bases, starting from the largest initial k, until assembly succeeds or until k has been increased 6
times, that is, by 60 bases8.

The first step is to create a set of sequences to be kmerized and put into the de Bruijn graph. These sequences
are: the reference haplotype, any requested alleles given by the alleles argument in HaplotypeCaller’s “genotype
given alleles” (GGA) mode9, and maximal subsequences of reads with base quality at least 10 by default10 and at
least one kmer long. That is, a read with 100 bases and a base of quality 7 at position 70 yields sequences of length
69, 30 if k = 10 and a single sequence of length 69 if k = 40. We do not use mate information; that is, a read and its
mate yield completely independent sequences, nor do we later post-process the graph using mate information. This
is a potential direction for improvement.

Before building the graph, the ReadThreadingAssembler finds the set of all kmers that appear more than once in
the same sequence i.e. more than once in the reference or in any read. These are called “non-unique” kmers and a
kmer that is not non-unique is called “unique.” Then each sequence is kmerized starting from the first unique kmer11,
with the exception that the reference sequence begins at its first kmer, unique or not. When a new kmer appear a
new vertex is added to the graph. When a unique kmer that is already on the graph appears an edge is added, or
the multiplicity of an extant edge is incremented, from the preceding kmer to the current one. When a non-unique
kmer appears and there is already an edge joining the previous kmer to it this edge’s multiplicity is incremented, but
if an edge does not already exist a completely new vertex and edge are created12. The advantage of creating a new
vertex for a non-unique kmer rather than re-using an old vertex is that it avoids spurious cycles. Up to this point,
we have strayed from a canonical de Bruijn graph only as noted above. Note that this is a directed graph of kmers
from aligned reads (i.e. aligned to the forward strand of the reference), not a bidirected graph of unaligned reads that
could come from either strand, with the complications of associating a kmer with its reverse complement.

6 By default, 10 and 25. This size is a compromise and no single value is the best choice for all regions. Large kmers are more likely to
be unique and to yield a graph with no cycles, which is especially important in low-complexity regions, but they are more susceptible
to decreased sensitivity due to errors and low coverage.

7 This uniqueness condition is waived on the last attempt when k has been increased by 60 bases.
8 These constants, 10 and 6, are hard-coded, but the attempts to increase k can be disabled completely with the

dontIncreaseKmerSizesForCycles argument.
9 This mode is disabled in Mutect and incompatible with the reference confidence mode of HaplotypeCaller, which is the recommended

best practice. We document it here for completeness. Before assembly, the GATK engine creates GGA haplotypes by substituting the
reference bases with the alt bases from the GGA vcf in the reference haplotype. These GGA haplotypes are treated as non-reference
sequences, that is, as long reads. The engine does not induce all possible haplotypes obtained from different phasings of GGA alleles,
although depending on the kmer size many such haplotypes may appear in the assembly graph.

10 This is controlled by the minBaseQualityScore argument.
11 Note that a kmer that occurs only once in this particular sequence but more than once in some other sequence in non-unique.
12 The fact that a non-unique kmer may be associated with multiple vertices on the graph is an important difference between this and a

pure de Bruijn graph.



3

FIG. 3: A dangling tail merged back into the reference path. Reference path edges given by red arrows.

III. CLEANING THE GRAPH

Before deciding on candidate haplotypes, the assembler simplifies the graph with the following heuristics to remove
spurious paths and to merge variant paths that diverge from the reference.

• pruning: The assembler finds all maximal non-branching subgraphs (“chains”) and removes those that 1) do not
share an edge with the reference path and 2) contain no edges with sufficient multiplicity13 While the default
multiplicity threshold of 2 is quite permissive, it does cause Mutect to lose sensitivity for deletions occurring
in a single read14.
There is a command line flag --adaptive-pruning to turn on an adaptive pruning algorithm that adjusts itself
to both the local depth of coverage and the observed sequencing error rate and removes chains based on a
likelihood score. The score of a chain is the maximum of a left score and a right score, where the score on left
(right) end of the chain is the active region determination log likelihood from the Mutect2Engine, treating the
first (last) edge of the chain as a potential variant reads and all other outgoing (incoming) edges of the first
(last) vertex in the chain as ref reads. The adaptive algorithm does this in two passes, where the first pass is
used to determine likely errors from which to determine an empirical guess of the error rate.
The adaptive pruning option is extremely useful for samples with high coverage, such as mitochondria and
targeted panels, and for samples with variable coverage, such as exomes and RNA.

• dangling tails: The assembler only outputs haplotypes that start and end with a reference kmer, so it attempts
to rescue paths in the graph that do not. To rescue a “dangling tails” – a path that ends in a non-reference
kmer vertex – the assembler first traverses the graph backwards from this vertex to a reference vertex. If
during traversal it encounters a vertex with more than one incoming edge it gives up15 It also gives up if it
encounters a vertex with more than one outgoing edge, that is, if the path branches again after diverging from
the reference16. Then it generates the Smith-Waterman alignment of the branching path versus the reference
path after the vertex at which they diverge. If the alignment’s CIGAR contains three or fewer elements, that
is, if the alignment has at most one indel, the assembly engine attempts to merge the dangling tail back into
the reference.
To merge the dangling tail back into the reference path, the assembler finds the beginning of the maximal
common suffix of the dangling path and the reference path, that is, the point at which the sequences coverges17

and adds an edge between the dangling path’s vertex and the reference path’s vertex at this position. This
means that the graph is no longer a valid de Bruijn graph because the dangling vertex kmer and its succeeding
reference vertex kmer do not overlap by k − 1 bases. Nonetheless, this graph yields valid haplotypes when we
later “zip” the graph’s chains (see below) by accumulating the last base of each kmer.
Figure 3 shows the result of the tail from alt path ACCTGGA(T→C)CC being merged back into the reference
path.

• dangling heads: This case and its treatment in the assembly engine is the mirror image of dangling tails.

• non-reference paths: After attempting to merge dangling heads and tails into the reference path, the assembler
deletes edges and vertices belonging to dead ends i.e. non-branching subgraphs that start at non-reference
source vertices or end at non-reference sink vertices. This is achieved by performing a breadth-first search of

13 By default 2. This is controlled by the minPruning argument.
14 While a SNV occurring on a single read would not yield a confident somatic variant call, a long deletion in a non-STR context could

easily be supported by a single read be due to the tiny probability of its arising from sequencing error.
15 as opposed to doing eg depth-first search of all possible paths back to the reference.
16 It seems like this could be changed to increase sensitivity.
17 this is not where the paths in the graph converge (they don’t) because kmers in the suffix disagree with the ref at upstream bases.



4

FIG. 4: A zipped sequence graph.

FIG. 5: A merged diamond.

vertices moving forward from the reference source and a breadth-first search of vertices moving backwards from
the reference sink and keeping only vertices found in both searches.

• zipping chains: A de Bruijn graph of kmers is convenient for performing assembly but is inefficient for summa-
rizing the results of assembly. In this step the assembler converts the de Bruijn graph18 into a sequence graph
by combining all vertices in each maximal non-branching subgraph (i.e. each linear chain) into a single vertex
containing the sequence implied by those vertices’ kmers19. Thus, for example, a de Bruijn graph containing
one reference path and one bubble for a single variant, such as the graph of Figure 2 yields a sequence graph
with four vertices: the reference subgraphs before and after the bubble and the two sides of the bubble, as in
Figure 4.

• merging diamonds: The assembler looks for nodes A and C such that multiple paths A → Bi → C exist and
absorbs the common prefix of {Bi} into A and the common suffix of {Bi} into C. For example, if k = 10 and
there was a single SNV bubble in the de Bruijn graph, the zipped sequence graph has a reference source path
(A), a reference sink path (C) and two sides of the bubble (B1 and B2) that are each 10 bases long. Since B1
and B2 differ only in a single base, their common bases can be absorbed into A and C such that B1 and B2
contain only a single base each. Merging tails works the same way without the terminal vertex C and merging
common suffixes works the same way without the terminal vertex A. Figure 5 shows the graph of Figure 4 after
the common suffix GGTT of the two sides of the bubble are absorbed into the terminal vertex.

• splitting common prefixes and suffixes: If there are multiple nodes Si with a common predecessor and successor
of the form Si = A + xi + B, where A is a common prefix, B is a common suffix, and xi is unique to Si, the
assembler splits each Si such that A and B become independent nodes, with the xi in between.

• The clean-up steps of zipping chains, merging diamonds, tails, and common suffixes, and splitting common
prefixes and suffixes are repeated until no more transformations occur.

When the debugGraphTransformations argument is used, the assembly engine emits graphviz .dot files for each
of the steps above.

IV. FINDING HAPLOTYPES

At this point there is one cleaned sequence graph for each successful kmer size. For each graph we find the best
haplotypes20 according the following score: the score of a path (haplotype) in a sequence graph is the sum over all
branching vertices in the path of the log of the multiplicity of the outgoing edge in the path minus the log of the total
multiplicity of all outgoing edges. This formula is implemented as a recursive depth-first search, sped up via dynamic

18 or rather, if dangling paths have been merged, an almost de Bruijn graph.
19 That is, the concatenation of the last bases of all kmers, except for the first vertex which contributes its entire kmer if and only if it is

a source.
20 This is 128 by default and set by the maxNumHaplotypesInPopulation argument.



5

programming: Starting from the reference source vertex, the haplotype finder adds branching scores and instantiates
new haplotype finders for each edge whenever a path diverges and otherwise simply moves to the succeeding vertex
without changing the accumulated score. The recursion ends when a haplotype finder reaches a sink vertex. The
dynamic programming optimization is to cache the best sub-haplotypes found from every previously-reached vertex.
Then, whenever this vertex is reached from a different prefix path, its best suffix paths are queried from the cache.

This description completely defines the best haplotypes; the actual implementation is a somewhat complicated
recursive algorithm with lots of polymorphism.


