
HiOp – User Guide

version 0.3

by

Cosmin G. Petra

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

7000 East Avenue,
Livermore, CA 94550, USA.

Oct 15, 2017
Updated OCt, 2020

Technical report LLNL-SM-743591

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any war-
ranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United
States government or Lawrence Livermore National Security, LLC, and shall not
be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Contents

1 Introduction 3

2 Installing/building HiOp 4
2.1 Prerequisites . 4
2.2 Building, testing, and installing HiOp . 4
2.3 Support of host-device computations using (generic)CPU-(NVIDIA)GPU 4

3 Interfacing with HiOp 5
3.1 The NLP with dense constraints formulation requiring up to first-order derivative

information . 5
3.1.1 The C++ interface . 6
3.1.2 Specifying the optimization problem . 6
3.1.3 Specifying the inter-process/memory distribution of the problem 7
3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation 8

3.2 NLPs in the mixed dense-sparse (MDS) form . 9
3.2.1 The C++ interface . 10
3.2.2 Calling HiOp for a hiopInterfaceMDS formulation 13

3.3 Specifying a starting point for the optimization process 14
3.4 Compiling and linking your project with the HiOp library 15

4 Solver options 15
4.1 List of available options . 16

5 Licensing and copyright 17

6 Acknowledgments 17

2

1 Introduction

This document describes the HiOp suite of HPC optimization solvers for some large-scale non-
convex nonlinear programming problems (NLPs). Two main classes of optimization problems are
supported. First class consists of NLPs with extremely large number of variables but with a rela-
tively small number of general constraints; the solver for these problems is a memory-distributed,
MPI-based quasi-Newton interior-point solver using limited-memory approximations for the Hes-
sians. The second class of problems consists of NLPs that have dense and sparse blocks, for
which a “Newton” interior-point solver is available toghether with a specialized, so called mixed
dense-sparse (MDS) linear algebra capable of achieving good performance on host-device, i.e.,
CPU-GPU, computing hardware.

This document includes instructions on how to obtain and build HiOp and a description of
its interface, user options, and use as an optimization library. Guidelines on how is best to use
the solver for parallel computations are also provided. The document generally targets users
of HiOp, but also contains information relevant to potential developers or advanced users; these
are strongly encouraged to also read the paper on the computational approach implemented in
HiOp [2].

While the MPI quasi-Newton solver of Hiop targets DAE- and PDE-constrained optimization
problems formulated in a “reduced-space” approach, it can be used for general nonconvex non-
linear optimization as well. For efficiency considerations, it is recommended to use quasi-Newton
Hiop for NLPs that have a relatively small number of general constraints, say less than 100; note
that there are no restrictions on the number of bounds constraints, e.g., one can specify simple
bounds on any, and potentially all the decision variables without affecting the computational
efficiency. The minimizers computed by HiOp satisfies local first-order optimality conditions.

The goal of quasi-Newton solver of HiOp is to remove the parallelization limitations of existing
state-of-the-art solvers for nonlinear programming (NLP) and match/surpass the parallel scala-
bility of the underlying PDE or DAE solver. Such limitation occurs whenever the dimensionality
of the optimization space is as large as the dimensionality of the discretization of the differential
systems of equations governing the optimization. In these cases, the use of existing NLP solvers
results in i. considerable long time spent in optimization, which affects the parallel scalability,
and/or ii. memory requirements beyond the memory capacity of the computational node that
runs the optimization. HiOp removes these scalability/parallelization bottlenecks (for certain op-
timization problems described above) by offering interface for a memory-distributed specification
of the problem and parallelizing the optimization search using specialized parallel linear algebra
technique.

The general computational approach in HiOp is to use existing state-of-the-art NLP algorithms
and develop linear algebra kernels tailored to the specific of this class of problems. HiOp is based
on an interior-point line search filter method [4, 5] and follows the implementation details from [6],
which is the implementation paper for IPOPT open-source NLP solver. The quasi-Newton ap-
proach is based on limited-memory secant approximations of the Hessian [1], which is generalized
as required by the specific of interior-point methods for constrained optimization problems [2].
The specialized linear algebra decomposition is obtained by using a Schur-complement reduction
that leverages the fact that the quasi-Newton Hessian matrix has a small number of dense blocks
that border a low-rank update of a diagonal matrix. The technique is described in [2]. The
Newton interior-point solver of HiOp uses linear algebra specialized to the particular form of the
MDS NLPs supported by this solver, for more details consult Section 3.2.

The C++ parallel implementation in HiOp is lightweight and portable since it is expressed

3

and implemented only in terms of parallel (multi-)vector operations (implemented internally using
BLAS level 1 and level 2 operations and MPI for communication) and BLAS level 3 and LAPACK
operations for small dense matrices.

By using multithreadead BLAS and LAPACK libraries, e.g., INTEL MKL, GotoBlas, Atlas,
etc, additional, intra-node parallelism can be achieved. These libraries are usually machine/hard-
ware specific and available for a variety of computer architectures. A list of BLAS/LAPACK
implementations can be found at https://en.wikipedia.org/wiki/Basic_Linear_Algebra_

Subprograms#Implementations.

2 Installing/building HiOp

HiOp is available on Lawrence Livermore National Laboratory (LLNL) github’s page at https:

//github.com/LLNL/hiop. HiOp can be obtained by cloning the repository or by downloading
the release archive(s). To clone from the repository, one needs to simply run

> git clone https://github.com/LLNL/hiop.git

2.1 Prerequisites

HiOp is written in C++ (C++98) and requires a C++ compiler. Also it requires BLAS and
LAPACK, and, optionally, MPI. Not having MPI enabled in HiOp results in HiOp running on one
processor only; still, significant multi-core parallelization can be obtained by using multithreaded
BLAS and LAPACK. The CMake-based build system of HiOp generally detects these prerequisites
automatically.

At this point the build system only supports macOS and Linux operating systems. On the
other hand, other than the build system, HiOp’s code is platform independent and should run fine
on Windows as well.

2.2 Building, testing, and installing HiOp

The build system is based on CMake. Up-to-date detailed information about HiOp custom builds
and installs are kept at https://github.com/LLNL/hiop.

A quick way to build and code is run the following commands in the ‘build/’ directory in the
root HiOp directory:

> cmake ..

> make all

> make test

> make install

This will compile, build the static library and example executables, perform a couple of tests to
detect potential issues during the installation, and will install HiOp’s header and the static library
in the root directory under ‘ build defaultDist/’

2.3 Support of host-device computations using (generic)CPU-(NVIDIA)GPU

Starting version 0.3, HiOp offers support for NVIDIA GPU computations acceleration. This
feature is available only when solving NLPs in the mixed dense-sparse (MDS) form and should be
enabled during the build by using -DHIOP USE GPU option with cmake. HiOp’s cmake build system

4

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Implementations
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Implementations
https://github.com/LLNL/hiop
https://github.com/LLNL/hiop
https://github.com/LLNL/hiop

is quite versatile to find the dependencies required to offload computations to the device GPUs
since was developed and tested on a few GPU-enabled HPC platforms at Oak Ridge, Lawrence
Livermore, and Pacific Northwestern National Laboratories. These dependencies consist of CUDA
library version 10.1 or later and a recent Magma linear solver library (as well as a physical
NVIDIA GPU device). HiOp offers an extensive build support for using customized NVIDIA
libraries and/or Magma solver as well as for advanced troubleshooting. The user is referred to
cmake/FindHiopCudaLibraries.cmake and cmake/FindMagma.cmake scripts.

"Note: Installing NVIDIA CUDA (and likely the NVIDIA driver) and/or building Magma can
be quite challenging. The user is encouraged to rely on preinstalled versions of these, as they are
available via module utility on virtually all high-performance computing machines. An example
of how to satisfy all the GPU dependencies on Summit supercomputer at Oak Ridge National Lab
with a one commands are available at https://github.com/LLNL/hiop/blob/master/README_

summit.md.

3 Interfacing with HiOp

Once HiOp is built, it can be used as the optimization solver in your application through the
HiOp’s C++ interfaces and by linking with the static library. A shared dynamic load library can
be also built using HIOP BUILD SHARED option with cmake. There are types or formulations of
optimization supported currently by HiOp, which are described below.

3.1 The NLP with dense constraints formulation requiring up to first-order
derivative information

A first class of problems supported by HiOp consists of nonlinear nonconvex NLP with dense
constraints of the form

min
x∈Rn

f(x) (1)

s.t. c(x) = cE [yc] (2)

[vl] dl ≤ d(x) ≤ du [vu] (3)

[zu] xl ≤ x ≤ xu [zu] (4)

Here f : Rn → R, c : Rn → RmE , d : Rn → RmI . The bounds appearing in the inequality
constraints (3) are assumed to be dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of
one of dli and dui are finite for all i ∈ {1, . . . ,mI}. The bounds in (4) are such that xl ∈ Rn∪{−∞},
xu ∈ Rn ∪ {+∞}, and xli < xui , i ∈ {1, . . . , n}. The quantities insides brackets are the Lagrange
multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by
convention zero.

The following quantities are required by HiOp:

D1 objective and constraint functions f(x), c(x), d(x);

D2 the first-order derivatives of the above: ∇f(x), Jc(x), Jd(x);

D3 the simple bounds xl and xu, the inequalities bounds: dl and du, and the right-hand size of
the equality constraints cE .

5

https://github.com/LLNL/hiop/blob/master/README_summit.md
https://github.com/LLNL/hiop/blob/master/README_summit.md

3.1.1 The C++ interface

The above optimization problem (1)-(4) can be specified by using the C++ interface, namely
by deriving and providing an implementation for the hiop::hiopInterfaceDenseConstraints

abstract class.
We present next the methods of this abstract class that needs to be implemented in order to

specify the parts D1-D3 of the optimization problem.

"Note: All the functions that return bool should return false when an error occurs, otherwise
should return true.

3.1.2 Specifying the optimization problem

All the methods of this section are “pure” virtual in hiop::hiopInterfaceDenseConstraints

abstract class and need to be provided by the user implementation.

1 bool get_prob_sizes (long long& n , long long& m) ;

Provides the number of decision variables and the number of constraints (m = mE +mI).

1 bool get_vars_info (const long long& n , double *xlow , double * xupp ,
2 NonlinearityType* type) ;

Provides the lower and upper bounds xl and xu on the decision variables. When a variable (let
us say the ith) has no lower or/and upper bounds, the ith entry of xlow and/or xupp should be
less than −1e20 or/and larger than 1e20, respectively. The last argument is not used and can set
to any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType.

1 bool get_cons_info (const long long& m , double * clow , double * cupp ,
2 NonlinearityType* type) ;

Similar to the above, but for the inequality bounds dl and du. For equalities, set the corresponding
entries in clow and cupp equal to the desired value (from cE).

1 bool eval_f (const long long& n ,
2 const double * x , bool new_x ,
3 double& obj_value) ;

Implement this method to compute the function value f(x) in obj value for the provided decision
variables x. The input argument new x specifies whether the variables x have been changed since
the previous call of one of the eval methods. Use this argument to “buffer” the objective and
gradients function and derivative evaluations when this is possible.

1 bool eval_grad_f (const long long& n ,
2 const double * x , bool new_x ,
3 double * gradf) ;

Same as above but for ∇f(x).

6

1 bool eval_cons (const long long& n , const long long& m ,
2 const long long& num_cons ,
3 const long long * idx_cons , const double * x ,
4 bool new_x , double * cons) ;

Implement this method to provide the value of the constraints c(x) and/or d(x). The input
parameter num cons specifies how many constraints (out of m) needs to evaluated; idx cons array
specifies the indexes, which are zero-based, of the constraints and is of size num cons. These
values should be provided in cons, which is also an array of size num cons.

1 bool
2 eval_Jac_cons (const long long& n , const long long& m ,
3 const long long& num_cons , const long long * idx_cons ,
4 const double * x , bool new_x ,
5 double ** Jac) ;

Implement this method to provide the Jacobian of a subset of the constraints c(x) and/or d(x) in
Jac; as above this subset is specified by the array idx cons. To set the (i, j) entry of the Jacobian
to v, one can use Jac[i][j]=v;. Alternatively, if you have a contiguous row-wise array storage
of the Jacobian, simply (mem)copy it in Jac[0].

3.1.3 Specifying the inter-process/memory distribution of the problem

HiOp uses data parallelism, meaning that the data [D1]-[D3] of the optimization problem is dis-
tributed across processes (MPI ranks). It is crucial to understand the data distribution scheme
in order to use HiOp’s interface properly.

The general rule of thumb is to distribute any data of the problem with storage depending
on n, namely the decision variables x and their bounds xl and xu, the gradient ∇f(x), and the
Jacobians Jc(x) and Jd(x). The Jacobians, which are assumed to be dense matrices with n
columns, are distributed column-wise.

Rank 1 Rank 2 . . . Rank p

x, xl, xu · · · · · · · · · · · ·
f(·), ci(·),di(·) val val · · · val

∇f(x) · · · · · · · · · · · ·

Jc(·), Jd(·) · · · · · · · · · · · ·

cE, dl, du

Figure 1: Depiction of the distribution of the data of the optimization problem (1)-(4) across
MPI ranks. The vectors and matrices with storage dependent on the number of optimization
variables are distributed. Other data, i.e., scalar function values or vectors of small size (shown
in dashed dark grey boxes), are replicated on each rank.

"Note: All the eval functions of the C++ interface provides local array slices of the
above mentioned distributed data to the application code that implements HiOp’s C++ inter-
face. The size of these local slices is the “local size” (specified by the application code through

7

the get vecdistrib info method explained below) and is different from the “global size” n and
parameter n of methods.

"Note: Since the Jacobians are distributed column-wise, the implementer should populate the
Jac argument of eval Jac cons with the “local” columns.

On the other hand, the problem’s data that does not have storage depending on n, is not
distributed; instead, it is replicated on all ranks. Such data consist of cE , dl, du and the evaluations
of c(x) and d(x).

1 bool get_MPI_comm (MPI_Comm& comm_out) ;

Use this method to specify the MPI communicator to be used by HiOp. It has a default imple-
mentation that will provide MPI COMM WORLD.

1 bool get_vecdistrib_info (long long global_n , long long * cols) ;

Use this method to specify the data distribution of the data of the problem that has storage
depending on n. HiOp will call the implementation of this methods to obtain the partitioning/dis-
tribution of an hypothetical vector of size global n across the MPI ranks. The array cols is of
dimension number of ranks plus one and should be populated such that cols[r] and cols[r+1]-1

specify the start and end indexes of the slice stored on rank r in the hypothetical vector. It has
a default implementation that will returns false, indicating that HiOp should run in serial.

"Note: HiOp also uses get vecdistrib info to obtain the information about the Jacobians’
distribution across MPI ranks (this is possible since they are column-wise distributed).

Examples of how to use these functions can be found in the standalone drivers in src/Drivers/

under the HiOp’s root directory.

3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation

Once an implementation of the hiop::hiopInterfaceDenseConstraints abstract interface class
containing the user’s NLP representation is available, the user code needs to create a HiOp prob-
lem formulation that encapsulate the NLP representation, instantiate an optimization algorithm
class, and start the numerical optimization process. Assuming that the NLP representation is
implemented in a class named NlpEx1 (deriving hiop::hiopInterfaceDenseConstraints), the
aforementioned sequence of steps can be performed by:

1 #inc lude ”NlpEx1 . hpp” // the NLP r e p r e s e n t a t i o n c l a s s
2 #inc lude ” h i o p I n t e r f a c e . hpp” //HiOP encapsu la t i on o f the NLP
3 #inc lude ” hiopAlgFi lterIPM . hpp” // s o l v e r c l a s s
4 us ing namespace hiop ;
5 . . .
6 NlpEx1 nlp_interface () ; // i n s t a n t i a t e your NLP r e p r e s e n t a t i o n←↩

c l a s s
7 hiopNlpDenseConstraints nlp (nlp_interface) ; // c r e a t e HiOP encapsu la t i on
8 nlp . options . SetNumericValue (”mu0” , 0 . 01) ; // s e t i n i t i a l va lue f o r b a r r i e r ←↩

parameter
9 hiopAlgFilterIPM solver(&nlp) ; // c r e a t e a s o l v e r ob j e c t

10 hiopSolveStatus status = solver . run () ; // numerica l opt imiza t i on
11 double obj_value = solver . getObjective () ; // get o b j e c t i v e
12 . . .

8

Various output quantities of the numerical optimization phase (e.g., the optimal objective value
and (primal) solution, status of the numerical optimization process, and solve statistics) can be
retrieved from HiOp’s hiopAlgFilterIPM solver object. Most commonly used such methods are:

1 double getObjective () const ;
2 void getSolution (double * x) const ;
3 hiopSolveStatus getSolveStatus () const ;
4 i n t getNumIterations () const ;

The standalone drivers nlpDenseCons ex1, nlpDenseCons ex2, and nlpDenseCons ex3 inside
directory src/Drivers/ under the HiOp’s root directory contain more detailed examples of the
use of HiOp.

3.2 NLPs in the mixed dense-sparse (MDS) form

A second class of optimization problems supported by HiOp consists of nonlinear, possibly non-
convex optimization problems that explicitly partition the optimization variables into so-called
“dense” and “sparse“ variables, xd and xs, respectively; this problem can be expressed compactly
as

min
xd∈Rnd ,xs∈Rns

f(xd, xs) (5)

s.t. c(xd, xs) = cE , (6)

dl ≤ d(xd, xs) ≤ du, (7)

xld ≤ xd ≤ xud , xls ≤ xs ≤ xus . (8)

Here f : Rn → R, c : Rn → RmE , and d : Rn → RmI , where n denotes the total number of
variables, n = nd +ns. The bounds appearing in the inequality constraints (7) are assumed to be
dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of one of dli and dui are finite for each
i ∈ {1, . . . ,mI}. The vector bounds xld, xud , xls, and xus in (8) need to satisfy identical requirements.
For the rest of the paper m will denote mE +mI , i.e., the total number of constraints excepting
the simple bounds constraints (8).

The salient idea behind mixed dense-sparse problems of the form (5)-(8) is that the explicit
partitioning of the optimization variables and a couple of (block) structural properties of the
functions f(·), c(·), and d(·), which are elaborated below, allow orchestrating the computations
of the optimization algorithm to heavily rely on matrix and vector dense kernels and to reduce
the reliance on sparse linear algebra kernels.

As mentioned above we make a couple of assumptions on the block structure of the derivatives:

A1. The “cross-term” Hessian matrices ∇2
xdxs

f , ∇2
xsxd

f , ∇2
xdxs

c, ∇2
xsxd

c, ∇2
xdxs

d, and ∇2
xsxd

d
are zero;

A2. The Hessian matrix ∇2
xsxs

L has a sparsity pattern that allows computationally efficient
inversion of (or solving with) the matrix ∇2

xsxs
L+Dxs where Dxs is a diagonal matrix with

positive diagonal entries; in our target applications, namely, optimal power flow problems,
∇2

xsxs
L is a diagonal matrix with nonnegative entries.

The optimization problem (5)–(8) is transformed internally by HiOp to an equivalent form that
is more amenable to the use of interior-point methods as described on [3, Section 3]. Furthermore,

9

HiOp implements the filter line-search interior-point algorithm of Wächter and Biegler [5, 4] (also
implemented by IPOPT [6]) and makes explicit use of second-order derivatives/Hessians.

Starting version 0.3, HiOp offers support for NVIDIA GPU computations acceleration. This
feature is available only when solving NLPs in the mixed dense-sparse (MDS) form and should be
enabled during the build by using -DHIOP USE GPU option with cmake. HiOp’s cmake build system
is quite versatile to find the dependencies required to offload computations to the device GPUs
since was developed and tested on a few GPU-enabled HPC platforms at Oak Ridge, Lawrence
Livermore, and Pacific Northwestern National Laboratories. These dependencies consist of CUDA
library version 10.1 or later and a recent Magma linear solver library (as well as an NVIDIA GPU).
If offloading computations to the device is not desired, the user can switch it off and perform only
CPU (host) computations by setting HiOp’s option compute mode to cpu. The Newton interior-
point solver for MDS problems offers ample device/GPU (and limited CPU/multicore) fine-grain
parallelism, however it does not offer support of interprocess/internode parallelism.

The following quantities are required by HiOp:

D1 objective and constraint functions f(xd, xs), c(xd, xs), d(xd, xs);

D2 the first-order derivatives: ∇f(xd, xs), Jc(xd, xs), Jd(xd, xs); the two Jacobians will have a
MDS structure in the sense that the left blocks will be dense while the right blocks will be
sparse in their expressions

Jc(xd, xs) =
[
Jxd

c(xd, xs) Jxsc(xd, xs)
]

(9)

and

Jd(xd, xs) =
[
Jxd

d(xd, xs) Jxsd(xd, xs)
]
. (10)

HiOp does not track MDS structure within the gradient ∇f(xd, xs) and treats it as an
unstructured vector.

D3 the second-order derivatives in the form of the Hessian of the Lagrangian

∇2L(xd, xs) = λ0∇2f(xd, xs) +

mE∑
i=1

λEi ∇2ci(xd, xs) +

mI∑
i=1

λIi∇2di(xd, xs). (11)

We remark that ∇2L(xd, xs) has a so-called MDS structure in the sense that ∇2
x2
d
L(xd, xs)

is dense, ∇2
x2
s
L(xd, xs) is sparse, and ∇2

xdxs
L(xd, xs) and ∇2

xsxd
L(xd, xs) are zero; this is a

consequence of the assumptions A1 and A2 above,

D4 the simple bounds xl and xu, the inequalities bounds: dl and du, and the right-hand size of
the equality constraints cE .

3.2.1 The C++ interface

The above optimization problem (5)–(8) can be specified by using the C++ interface, namely by
deriving and providing an implementation for the hiop::hiopInterfaceMDS abstract class.

We present next the methods of this abstract class that needs to be implemented in order
to specify the parts D1-D4 of the optimization problem. All the methods of this section are
“pure” virtual in hiop::hiopInterfaceMDS abstract class and need to be provided by the user
implementation.

"Note: Unless stated otherwise, all the functions that return bool should return false when
an error occurs, otherwise should return true.

10

1 bool get_prob_sizes (long long& n , long long& m) ;

Provides the number of decision variables and the number of constraints (m = mE +mI).

1 bool get_vars_info (const long long& n , double *xlow , double * xupp ,
2 NonlinearityType* type) ;

Provides the lower and upper bounds xl and xu on the decision variables. When a variable (let
us say the ith) has no lower or/and upper bounds, the ith entry of xlow and/or xupp should be
less than −1e20 or/and larger than 1e20, respectively. The last argument is not used and can set
to any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType.

1 bool get_cons_info (const long long& m , double * clow , double * cupp ,
2 NonlinearityType* type) ;

Similar to the above, but for the inequality bounds dl and du. For equalities, set the corresponding
entries in clow and cupp equal to the desired value (from cE).

1 bool get_sparse_dense_blocks_info (i n t& nx_sparse , i n t& nx_dense ,
2 i n t& nnz_sparse_Jaceq ,
3 i n t& nnz_sparse_Jacineq ,
4 i n t& nnz_sparse_Hess_Lagr_SS ,
5 i n t& nnz_sparse_Hess_Lagr_SD) ;

Specifies the number of nonzero elements in the sparse blocks of the Jacobians of the constraints
and of the Hessian of the Lagrangian, see (10) and (11), respectively. The last parameter
nnz sparse Hess Lagr SD is not used momentarily and should be set to zero.

1 bool eval_f (const long long& n ,
2 const double * x , bool new_x ,
3 double& obj_value) ;

Implement this method to compute the function value f(x) in obj value for the provided decision
variables x. The input argument new x specifies whether the variables x have been changed since
the previous call of one of the eval methods. Use this argument to “buffer” the objective and
gradients function and derivative evaluations when this is possible.

1 bool eval_grad_f (const long long& n ,
2 const double * x , bool new_x ,
3 double * gradf) ;

Same as above but for ∇f(x).

1 bool eval_cons (const long long& n , const long long& m ,
2 const long long& num_cons ,
3 const long long * idx_cons , const double * x ,
4 bool new_x , double * cons) ;

Implement this method to provide the value of the constraints c(x) and/or d(x). The input
parameter num cons specifies how many constraints (out of m) needs to evaluated; idx cons array

11

specifies the indexes, which are zero-based, of the constraints and is of size num cons. These
values should be provided in cons, which is also an array of size num cons.

1 eval_Jac_cons (const long long& n , const long long& m ,
2 const long long& num_cons , const long long * idx_cons ,
3 const double * x , bool new_x ,
4 const long long& nsparse , const long long& ndense ,
5 const i n t& nnzJacS , i n t * iJacS , i n t * jJacS , double * MJacS ,
6 double ** JacD) ;

Evaluates the Jacobian of constraints split in the sparse (triplet format) and dense submatrices
(contiguous rows storage). The methods is called by HiOp twice once for equalities and once for
inequalities and passes during each of these calls the idx cons array of the indexes of equalities
and inequalities in the whole body of constraints.

It is advantageous to provide this method when the underlying NLP’s constraints come natu-
rally split in equalities and inequalities. When this is not convenient to do so, use eval Jac cons

below.
Parameters:

� first six: see eval cons.

� nnzJacS, iJacS, jJacS, MJacS are for number of nonzeros, (i, j) indexes, and nonzero values
of the sparse Jacobian.

� JacD: dense Jacobian as a contiguous array storing the matrix by rows; the array is “primed”
to support double indexing JacD[i][j].

Notes for implementer of this method:

1. JacD parameter will be always non-null

2. When iJacS and jJacS are non-null, the implementer should provide the (i, j) indexes in
these arrays.

3. When MJacS is non-null, the implementer should provide the values corresponding to entries
specified by iJacS and jJacS.

4. iJacS and jJacS are both either non-null or null during a call.

5. The pair (iJacS, jJacS) and MJacS can be both non-null during the same call or only one
of them non-null; but they will not be both null.

1 bool eval_Jac_cons (const long long& n , const long long& m ,
2 const double * x , bool new_x ,
3 const long long& nsparse , const long long& ndense ,
4 const i n t& nnzJacS , i n t * iJacS , i n t * jJacS , double * MJacS ,
5 double ** JacD) ;

Evaluates the Jacobian of equality and inequality constraints in one call. This Jacobian is mixed
dense-sparse (MDS), which means is structurally split in the sparse (triplet format) and dense
matrices (contiguous rows storage)

12

"Note: HiOp will call this method whenever the implementer/user returns false from the
previous, two-calls eval Jac cons; we remark that this method should return false during both
calls (for equalities and inequalities) made to it by HiOp.

The main difference from the above eval Jac cons is that the implementer/user of this
method does not have to split the constraints into equalities and inequalities; instead, HiOp
does this internally.

Parameters:

� first four: number of variables, number of constraints, (primal) variables at which the Jaco-
bian should be evaluated, and boolean flag indicating whether the variables x have changed
since a previous call to any of the function and derivative evaluations.

� nsparse and ndense: number of sparse and dense variables, respectively, adding up to n.

� nnzJacS, iJacS, jJacS, MJacS: number of nonzeros, (i, j) indexes, and nonzero values of
the sparse Jacobian block; these indexes are within the sparse Jacobian block (not within
the entire Jacobian).

� JacD: dense Jacobian block as a contiguous array storing the matrix by rows; array is
“primed” to support double indexing JacD[i][j].

"Note: Notes 1-5 from the previous, two-call eval Jac cons applies here as well.

1 bool eval_Hess_Lagr (const long long& n , const long long& m ,
2 const double * x , bool new_x , const double& obj_factor ,
3 const double * lambda , bool new_lambda ,
4 const long long& nsparse , const long long& ndense ,
5 const i n t& nnzHSS , i n t * iHSS , i n t * jHSS , double * MHSS ,
6 double ** HDD ,
7 i n t& nnzHSD , i n t * iHSD , i n t * jHSD , double * MHSD) ;

Evaluates the Hessian of the Lagrangian function in three structural blocks given by the MDS
structure of the problm. nnzHSS, iHSS, jHSS, and MHSS hold ∇2L(xs, xs) from (11). HDD stores
∇2L(xd, xd) from (11).

"Note: The last four arguments, which are supposed to store the cross-Hessian ∇2L(xs, xd)
from (11), are for now assumed to hold a zero matrix. The implementer should return nnzHSD=0

during the first call to eval Hess Lagr. On subsequent calls, HiOp will pass the sparse triplet HSD
arrays set to NULL and the implementer (obviously) should not use them.

"Note: Notes 1-5 from eval Jac cons apply to arrays iHSS, jHSS, and MHSS storing the sparse
part of the Hessian as well as to the HDD array storing the dense block of the Hessian.

"Note: The array lambda contains first the multipliers of the equality constraints followed by
the multipliers of the inequalities.

3.2.2 Calling HiOp for a hiopInterfaceMDS formulation

Once an implementation of the hiop::hiopInterfaceMDS abstract interface class containing the
user’s NLP representation is available, the user code needs to create a HiOp problem formulation
that encapsulate the NLP representation, instantiate an optimization algorithm class, and start
the numerical optimization process.

13

A detailed, self-contained example can be found in src/Drivers/ directory in nlpMDS ex4 driver.cpp

files for an illustration of aforementioned sequence of steps. A synposis of HiOp code that solves
and MDS NLP implemented presumably in a class Ex4 (implemented in nlpMDSForm ex4.hpp)
derived from hiop::hiopInterfaceMDS is as follows:

1 #inc lude ”nlpMDSForm ex4 . hpp” // the NLP r e p r e s e n t a t i o n c l a s s
2 #inc lude ” h i o p I n t e r f a c e . hpp” //HiOP encapsu la t i on o f the NLP
3 #inc lude ” hiopAlgFi lterIPM . hpp” // s o l v e r c l a s s
4 us ing namespace hiop ;
5 . . .
6 Ex4* my_nlp = new Ex4 (n_sp , n_de) ; // i n s t a n t i a t e your NLP r e p r e s e n t a t i o n c l a s s
7 hiopNlpMDS nlp (* my_nlp) ; // c r e a t e HiOP encapsu la t i on
8 nlp . options−>SetStringValue (” Hess ian ” , ” a n a l y t i c a l e x a c t ”) ;
9 nlp . options−>SetNumericValue (”mu0” , 0 . 01) ; // s e t i n i t i a l va lue f o r b a r r i e r ←↩

parameter
10 hiopAlgFilterIPMNewton solver(&nlp) ; // c r e a t e a s o l v e r ob j e c t
11 hiopSolveStatus status = solver . run () ; // numerica l opt imiza t i on
12 double obj_value = solver . getObjective () ; // get o b j e c t i v e
13 . . .

3.3 Specifying a starting point for the optimization process

The user can provide an initial primal or primal-dual point implementing the method get starting point

of the NLP specification interfaces hiopInterfaceDenseConstraints or hiopInterfaceMDS.

1 bool get_starting_point (const long long& n , const long long& m ,
2 double * x0 ,
3 bool& duals_avail ,
4 double * z_bndL0 , double * z_bndU0 ,
5 double * lambda0) ;

A second method is offered to user to provide an initial primal starting point. This method
will be soon deprecated as its functionality is a subset of the method above and should be avoided.

1 bool get_starting_point (const long long& n , double * x0) ;

Parameters:

� n and m are the number of variables and the number of constraints.

� x0 array of values for the initial primal variables/starting point.

� duals avail boolean flag expressing whether the user wishes to specifiy the a starting point
for dual variables.

� z bndL0 and z bndU0 starting points for the duals of the lower and upper bounds.

� lambda0 is an array containing the starting point for the duals of the constraints. It is allo-
cated to have the dimension of the constraints body and the entries in lambda0 should have
the same order as the constraints body (that is equalities may be mixed with inequalities),
see eval cons methods; HiOp keeps track internally whether each value in lambda0 is a
multiplier for an equality or for an inequlity constraint.

14

These methods should return true if the user successfully provided starting values for the
primal or for the primal and dual variables. If the first method above returns false, then HiOp

will attempt calling the second method above. This behavior is for backward compatibility. If
a starting point cannot be set by the user, both methods should return false. Also, we remark
that the methods do not need to be implemented since default implementations returning false

are provided by the base class; in this case, HiOp will use a starting point of all zeros (which is
subjected to internal adjustments, see below).

"Note: The starting point returned by the user in x0 using the methods above is subject
to internal adjustments in HiOp and may differ from x0 with which the methods of the previous
section are first called.

3.4 Compiling and linking your project with the HiOp library

HiOp’s build system offers HiOp as a static library. For a straightforward integration of HiOp in
the user’s project, one needs to

� append to the compiler’s include path the location of the HiOP’s headers:

-Ihiop-dir/include

� specify libhiop.a to the linker, possibly adding the HiOP’s library directory to the linker’s
libraries paths:

-Lhiop-dir/lib -lhiop

Here, hiop-dir is the HiOp’s distribution directory (created using HiOp’s build system, in partic-
ular by using make install command).

In addition, a shared dynamic load library can be also built by using HIOP BUILD SHARED

option with cmake.

4 Solver options

HiOp v0.1 prints all the available user options and their values on the standard output.

" Each option i. should be of one of types numeric/double, integer, and string; ii. has a value
associated; iii. possess a range of values; and, iv. has a default value.

The user can set HiOp’s options in two ways:

� via hiop.options file that should be placed in the same directory where the application
driver using HiOp is executed. The format of the hiop.options is very basic, each of its
lines should contain a single pair option name option value. Lines that begin with ’#’
are discarded. The option value is checked to have the correct type (numeric, integer, or
string) and to be in the expected range. If the checks fail, then the option is set to the
default value and a warning message is displayed.

� at runtime via the HiOp’s API using the options member of the hiop::hiopInterfaceDenseConstraints
or hiop::hiopInterfaceMDS classes. This object has three methods that allows the user
to set options based on their types:

15

1 bool SetNumericValue (const char * name , const double& value) ;
2 bool SetIntegerValue (const char * name , const i n t& value) ;
3 bool SetStringValue (const char * name , const char * value) ;

"Note: Options set in hiop.options file at runtime overwrite options set at runtime via the
above API.

4.1 List of available options

Name Type Default Range Explanation

tolerance numeric 1e-08 1e-14 – 0.1 Absolute error tolerance for the NLP

max iter integer 3000 1 to 1000000 Max number of iterations

acceptable
tolerance

numeric 1e-06 1e-14 – 0.1 HiOp will terminate if the NLP residuals are below this
option for acceptable iterations many consecutive it-
erations

acceptable
iterations

integer 15 1 – 1000000 Number of iterations of acceptable tolerance after which
HiOp terminates

verbosity
level

integer 3 0 – 12 Verbosity level: 0 no output (only errors), 1=0+warn-
ings, 2=1 (reserved), 3=2+optimization output,
4=3+scalars; larger values explained in hiopLogger.hpp

mu0 numeric 1.0 1e-06 – 1000 Initial log-barrier parameter mu

kappa eps numeric 10.0 1e-06 – 1000 mu is reduced when when log-bar error is below
kappa eps × mu

kappa mu numeric 0.2 1e-08 – 0.999 linear reduction coefficient for mu (eqn. (7) in [6])

theta mu numeric 1.5 1.0 – 2.0 exponential reduction coefficient for mu (eqn. (7) in [6])

tau min numeric 0.99 0.9 – 0.99999 fraction-to-the-boundary parameter used in the line-
search to back-off from the boundary (eqn. (8) in [6])

kappa1 numeric 1e-02 1e-08 – 1 sufficiently-away-from-the-boundary projection parame-
ter used in the shift of the user-provided initial point

kappa2 numeric 1e-02 1e-08 –
0.49999

shift projection parameter used in initialization for
double-bounded variables

dualsInitialization
string ”lsq” ”lsq” ”zero” type of update of the multipliers of the eq. cons.

dualsUpdateType
string ”lsq” ”lsq” ”linear” type of update of the multipliers of the eq. cons.

secant
memory
len

integer 6 0 – 256 length of the memory of the Hessian secant approxima-
tion

fixed var string ”none” ”remove” ”re-
lax” ”none”

treatment of fixed variables; in order, they can be re-
moved, their lower and upper bounds relaxed, or ignored.
The last value causes a premature termination if fixed
variables are detected.

fixed var
tolerance

numeric 1e-15 1e-30 – 1e-2 tolerance for |ub− lb| under which a variable will be con-
sidered fixed.

fixed var
perturb

numeric 1e-8 1e-14 – 0.1 Perturbation of the lower and upper bounds for a
fixed variable relative to its magnitude: lb/ub −=/+=
max(abs(ub),1)×fixed var perturb

compute mode string ”auto” ”auto” ”cpu”
”hybrid”

Offloading of computations to GPUs: ”hybrid” will use
GPUs for linear systems, ”auto” will decide between
”cpu” and ”hybrid” based on the other options passed,
and ”cpu” will only use device CPU.

time kkt string ”off” ”on” ”off” Turns on/off internal performance timers and analysis
and enables additional reporting of the computational
constituents of the KKT solve process

16

5 Licensing and copyright

HiOp is free software; you can modify it and/or redistribute it under the terms of the following
modified BSD 3-clause license:

Copyright (c) 2017, Lawrence Livermore National Security, LLC.
Produced at the Lawrence Livermore National Laboratory (LLNL).
Written by Cosmin G. Petra, petra1@llnl.gov. LLNL-CODE-742473. All rights reserved.

HiOp is released under the BSD 3-clause license (https://github.com/LLNL/hiop/blob/master/LICENSE).
Please also read “Additional BSD Notice” below.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

i. Redistributions of source code must retain the above copyright notice, this list of conditions and
the disclaimer below.

ii. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with
the distribution.

iii. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy
(DOE). This work was produced at Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of
their employees, makes any warranty, express or implied, or assumes any liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.

6 Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. The author also acknowledges the
support from the LDRD Program of Lawrence Livermore National Laboratory under the projects
16-ERD-025 and 17-SI-005.

17

References

[1] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices and
their use in limited memory methods. Mathematical Programming, 63(1):129–156, 1994.

[2] C. G. Petra. A memory-distributed quasi-Newton solver for nonlinear programming problems
with a small number of general constraints. Technical Report LLNL-JRNL-739001, Lawrence
Livermore National Laboratory, October 2017.

[3] C. G. Petra. A memory-distributed quasi-newton solver for nonlinear programming problems
with a small number of general constraints. Journal of Parallel and Distributed Computing,
133:337–348, 2019.

[4] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Local
convergence. SIAM Journal on Optimization, 16(1):32–48, 2005.

[5] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Moti-
vation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.

[6] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2006.

18

	Introduction
	Installing/building HiOp
	Prerequisites
	Building, testing, and installing HiOp
	Support of host-device computations using (generic)CPU-(NVIDIA)GPU

	Interfacing with HiOp
	The NLP with dense constraints formulation requiring up to first-order derivative information
	The C++ interface
	Specifying the optimization problem
	Specifying the inter-process/memory distribution of the problem
	Calling HiOp for a hiopInterfaceDenseConstraints formulation

	NLPs in the mixed dense-sparse (MDS) form
	The C++ interface
	Calling HiOp for a hiopInterfaceMDS formulation

	Specifying a starting point for the optimization process
	Compiling and linking your project with the HiOp library

	Solver options
	List of available options

	Licensing and copyright
	Acknowledgments

