Package madgraph :: Package core :: Module base_objects
[hide private]
[frames] | no frames]

Source Code for Module madgraph.core.base_objects

   1  ################################################################################ 
   2  # 
   3  # Copyright (c) 2009 The MadGraph5_aMC@NLO Development team and Contributors 
   4  # 
   5  # This file is a part of the MadGraph5_aMC@NLO project, an application which  
   6  # automatically generates Feynman diagrams and matrix elements for arbitrary 
   7  # high-energy processes in the Standard Model and beyond. 
   8  # 
   9  # It is subject to the MadGraph5_aMC@NLO license which should accompany this  
  10  # distribution. 
  11  # 
  12  # For more information, visit madgraph.phys.ucl.ac.be and amcatnlo.web.cern.ch 
  13  # 
  14  ################################################################################ 
  15  """Definitions of all basic objects used in the core code: particle,  
  16  interaction, model, leg, vertex, process, ...""" 
  17   
  18  import copy 
  19  import itertools 
  20  import logging 
  21  import math 
  22  import numbers 
  23  import os 
  24  import re 
  25  import StringIO 
  26  import madgraph.core.color_algebra as color 
  27  from madgraph import MadGraph5Error, MG5DIR, InvalidCmd 
  28  import madgraph.various.misc as misc  
  29   
  30   
  31  logger = logging.getLogger('madgraph.base_objects') 
  32  pjoin = os.path.join 
33 34 #=============================================================================== 35 # PhysicsObject 36 #=============================================================================== 37 -class PhysicsObject(dict):
38 """A parent class for all physics objects.""" 39
40 - class PhysicsObjectError(Exception):
41 """Exception raised if an error occurs in the definition 42 or the execution of a physics object.""" 43 pass
44
45 - def __init__(self, init_dict={}):
46 """Creates a new particle object. If a dictionary is given, tries to 47 use it to give values to properties.""" 48 49 dict.__init__(self) 50 self.default_setup() 51 52 assert isinstance(init_dict, dict), \ 53 "Argument %s is not a dictionary" % repr(init_dict) 54 55 56 for item in init_dict.keys(): 57 self.set(item, init_dict[item])
58 59
60 - def __getitem__(self, name):
61 """ force the check that the property exist before returning the 62 value associated to value. This ensure that the correct error 63 is always raise 64 """ 65 66 try: 67 return dict.__getitem__(self, name) 68 except KeyError: 69 self.is_valid_prop(name) #raise the correct error
70 71
72 - def default_setup(self):
73 """Function called to create and setup default values for all object 74 properties""" 75 pass
76
77 - def is_valid_prop(self, name):
78 """Check if a given property name is valid""" 79 80 assert isinstance(name, str), \ 81 "Property name %s is not a string" % repr(name) 82 83 if name not in self.keys(): 84 raise self.PhysicsObjectError, \ 85 """%s is not a valid property for this object: %s\n 86 Valid property are %s""" % (name,self.__class__.__name__, self.keys()) 87 return True
88
89 - def get(self, name):
90 """Get the value of the property name.""" 91 92 return self[name]
93
94 - def set(self, name, value, force=False):
95 """Set the value of the property name. First check if value 96 is a valid value for the considered property. Return True if the 97 value has been correctly set, False otherwise.""" 98 if not __debug__ or force: 99 self[name] = value 100 return True 101 102 if self.is_valid_prop(name): 103 try: 104 self.filter(name, value) 105 self[name] = value 106 return True 107 except self.PhysicsObjectError, why: 108 logger.warning("Property " + name + " cannot be changed:" + \ 109 str(why)) 110 return False
111
112 - def filter(self, name, value):
113 """Checks if the proposed value is valid for a given property 114 name. Returns True if OK. Raises an error otherwise.""" 115 116 return True
117
118 - def get_sorted_keys(self):
119 """Returns the object keys sorted in a certain way. By default, 120 alphabetical.""" 121 122 return self.keys().sort()
123
124 - def __str__(self):
125 """String representation of the object. Outputs valid Python 126 with improved format.""" 127 128 mystr = '{\n' 129 for prop in self.get_sorted_keys(): 130 if isinstance(self[prop], str): 131 mystr = mystr + ' \'' + prop + '\': \'' + \ 132 self[prop] + '\',\n' 133 elif isinstance(self[prop], float): 134 mystr = mystr + ' \'' + prop + '\': %.2f,\n' % self[prop] 135 else: 136 mystr = mystr + ' \'' + prop + '\': ' + \ 137 repr(self[prop]) + ',\n' 138 mystr = mystr.rstrip(',\n') 139 mystr = mystr + '\n}' 140 141 return mystr
142 143 __repr__ = __str__
144
145 146 #=============================================================================== 147 # PhysicsObjectList 148 #=============================================================================== 149 -class PhysicsObjectList(list):
150 """A class to store lists of physics object.""" 151
152 - class PhysicsObjectListError(Exception):
153 """Exception raised if an error occurs in the definition 154 or execution of a physics object list.""" 155 pass
156
157 - def __init__(self, init_list=None):
158 """Creates a new particle list object. If a list of physics 159 object is given, add them.""" 160 161 list.__init__(self) 162 163 if init_list is not None: 164 for object in init_list: 165 self.append(object)
166
167 - def append(self, object):
168 """Appends an element, but test if valid before.""" 169 170 assert self.is_valid_element(object), \ 171 "Object %s is not a valid object for the current list" % repr(object) 172 173 list.append(self, object)
174 175
176 - def is_valid_element(self, obj):
177 """Test if object obj is a valid element for the list.""" 178 return True
179
180 - def __str__(self):
181 """String representation of the physics object list object. 182 Outputs valid Python with improved format.""" 183 184 mystr = '[' 185 186 for obj in self: 187 mystr = mystr + str(obj) + ',\n' 188 189 mystr = mystr.rstrip(',\n') 190 191 return mystr + ']'
192
193 #=============================================================================== 194 # Particle 195 #=============================================================================== 196 -class Particle(PhysicsObject):
197 """The particle object containing the whole set of information required to 198 univocally characterize a given type of physical particle: name, spin, 199 color, mass, width, charge,... The is_part flag tells if the considered 200 particle object is a particle or an antiparticle. The self_antipart flag 201 tells if the particle is its own antiparticle.""" 202 203 sorted_keys = ['name', 'antiname', 'spin', 'color', 204 'charge', 'mass', 'width', 'pdg_code', 205 'line', 'propagator', 206 'is_part', 'self_antipart', 'type', 'counterterm'] 207
208 - def default_setup(self):
209 """Default values for all properties""" 210 211 self['name'] = 'none' 212 self['antiname'] = 'none' 213 self['spin'] = 1 214 self['color'] = 1 215 self['charge'] = 1. 216 self['mass'] = 'ZERO' 217 self['width'] = 'ZERO' 218 self['pdg_code'] = 0 219 #self['texname'] = 'none' 220 #self['antitexname'] = 'none' 221 self['line'] = 'dashed' 222 #self['propagating'] = True -> removed in favor or 'line' = None 223 self['propagator'] = '' 224 self['is_part'] = True 225 self['self_antipart'] = False 226 # True if ghost, False otherwise 227 #self['ghost'] = False 228 self['type'] = '' # empty means normal can also be ghost or goldstone 229 # Counterterm defined as a dictionary with format: 230 # ('ORDER_OF_COUNTERTERM',((Particle_list_PDG))):{laurent_order:CTCouplingName} 231 self['counterterm'] = {}
232
233 - def get(self, name):
234 235 if name == 'ghost': 236 return self['type'] == 'ghost' 237 elif name == 'goldstone': 238 return self['type'] == 'goldstone' 239 elif name == 'propagating': 240 return self['line'] not in ['None',None] 241 else: 242 return super(Particle, self).get(name)
243
244 - def set(self, name, value, force=False):
245 246 if name in ['texname', 'antitexname']: 247 return True 248 elif name == 'propagating': 249 if not value: 250 return self.set('line', None, force=force) 251 elif not self.get('line'): 252 return self.set('line', 'dashed',force=force) 253 return True 254 elif name in ['ghost', 'goldstone']: 255 if self.get('type') == name: 256 if value: 257 return True 258 else: 259 return self.set('type', '', force=force) 260 else: 261 if value: 262 return self.set('type', name, force=force) 263 else: 264 return True 265 return super(Particle, self).set(name, value,force=force)
266 267
268 - def filter(self, name, value):
269 """Filter for valid particle property values.""" 270 271 if name in ['name', 'antiname']: 272 # Forbid special character but +-~_ 273 p=re.compile('''^[\w\-\+~_]+$''') 274 if not p.match(value): 275 raise self.PhysicsObjectError, \ 276 "%s is not a valid particle name" % value 277 278 if name is 'ghost': 279 if not isinstance(value,bool): 280 raise self.PhysicsObjectError, \ 281 "%s is not a valid bool for the 'ghost' attribute" % str(value) 282 283 if name is 'counterterm': 284 if not isinstance(value,dict): 285 raise self.PhysicsObjectError, \ 286 "counterterm %s is not a valid dictionary" % repr(value) 287 for key, val in value.items(): 288 if not isinstance(key,tuple): 289 raise self.PhysicsObjectError, \ 290 "key %s is not a valid tuple for counterterm key" % repr(key) 291 if not isinstance(key[0],str): 292 raise self.PhysicsObjectError, \ 293 "%s is not a valid string" % repr(key[0]) 294 if not isinstance(key[1],tuple): 295 raise self.PhysicsObjectError, \ 296 "%s is not a valid list" % repr(key[1]) 297 for elem in key[1]: 298 if not isinstance(elem,tuple): 299 raise self.PhysicsObjectError, \ 300 "%s is not a valid list" % repr(elem) 301 for partPDG in elem: 302 if not isinstance(partPDG,int): 303 raise self.PhysicsObjectError, \ 304 "%s is not a valid integer for PDG" % repr(partPDG) 305 if partPDG<=0: 306 raise self.PhysicsObjectError, \ 307 "%s is not a valid positive PDG" % repr(partPDG) 308 if not isinstance(val,dict): 309 raise self.PhysicsObjectError, \ 310 "value %s is not a valid dictionary for counterterm value" % repr(val) 311 for vkey, vvalue in val.items(): 312 if vkey not in [0,-1,-2]: 313 raise self.PhysicsObjectError, \ 314 "Key %s is not a valid laurent serie order" % repr(vkey) 315 if not isinstance(vvalue,str): 316 raise self.PhysicsObjectError, \ 317 "Coupling %s is not a valid string" % repr(vvalue) 318 if name is 'spin': 319 if not isinstance(value, int): 320 raise self.PhysicsObjectError, \ 321 "Spin %s is not an integer" % repr(value) 322 if (value < 1 or value > 5) and value != 99: 323 raise self.PhysicsObjectError, \ 324 "Spin %i not valid" % value 325 326 if name is 'color': 327 if not isinstance(value, int): 328 raise self.PhysicsObjectError, \ 329 "Color %s is not an integer" % repr(value) 330 if value not in [1, 3, 6, 8]: 331 raise self.PhysicsObjectError, \ 332 "Color %i is not valid" % value 333 334 if name in ['mass', 'width']: 335 # Must start with a letter, followed by letters, digits or _ 336 p = re.compile('\A[a-zA-Z]+[\w\_]*\Z') 337 if not p.match(value): 338 raise self.PhysicsObjectError, \ 339 "%s is not a valid name for mass/width variable" % \ 340 value 341 342 if name is 'pdg_code': 343 if not isinstance(value, int): 344 raise self.PhysicsObjectError, \ 345 "PDG code %s is not an integer" % repr(value) 346 347 if name is 'line': 348 if not isinstance(value, str): 349 raise self.PhysicsObjectError, \ 350 "Line type %s is not a string" % repr(value) 351 if value not in ['None','dashed', 'straight', 'wavy', 'curly', 'double','swavy','scurly','dotted']: 352 raise self.PhysicsObjectError, \ 353 "Line type %s is unknown" % value 354 355 if name is 'charge': 356 if not isinstance(value, float): 357 raise self.PhysicsObjectError, \ 358 "Charge %s is not a float" % repr(value) 359 360 if name is 'propagating': 361 if not isinstance(value, bool): 362 raise self.PhysicsObjectError, \ 363 "Propagating tag %s is not a boolean" % repr(value) 364 365 if name in ['is_part', 'self_antipart']: 366 if not isinstance(value, bool): 367 raise self.PhysicsObjectError, \ 368 "%s tag %s is not a boolean" % (name, repr(value)) 369 370 return True
371
372 - def get_sorted_keys(self):
373 """Return particle property names as a nicely sorted list.""" 374 375 return self.sorted_keys
376 377 # Helper functions 378
379 - def is_perturbating(self,order,model):
380 """Returns wether this particle contributes in perturbation of the order passed 381 in argument given the model specified. It is very fast for usual models""" 382 383 for int in model['interactions'].get_type('base'): 384 # We discard the interactions with more than one type of orders 385 # contributing because it then doesn't necessarly mean that this 386 # particle (self) is charged under the group corresponding to the 387 # coupling order 'order'. The typical example is in SUSY which 388 # features a ' photon-gluon-squark-antisquark ' interaction which 389 # has coupling orders QED=1, QCD=1 and would induce the photon 390 # to be considered as a valid particle to circulate in a loop of 391 # type "QCD". 392 if len(int.get('orders'))>1: 393 continue 394 if order in int.get('orders').keys() and self.get('pdg_code') in \ 395 [part.get('pdg_code') for part in int.get('particles')]: 396 return True 397 398 return False
399
400 - def get_pdg_code(self):
401 """Return the PDG code with a correct minus sign if the particle is its 402 own antiparticle""" 403 404 if not self['is_part'] and not self['self_antipart']: 405 return - self['pdg_code'] 406 else: 407 return self['pdg_code']
408
409 - def get_anti_pdg_code(self):
410 """Return the PDG code of the antiparticle with a correct minus sign 411 if the particle is its own antiparticle""" 412 413 if not self['self_antipart']: 414 return - self.get_pdg_code() 415 else: 416 return self['pdg_code']
417
418 - def get_color(self):
419 """Return the color code with a correct minus sign""" 420 421 if not self['is_part'] and abs(self['color']) in [3, 6]: 422 return - self['color'] 423 else: 424 return self['color']
425
426 - def get_anti_color(self):
427 """Return the color code of the antiparticle with a correct minus sign 428 """ 429 430 if self['is_part'] and self['color'] not in [1, 8]: 431 return - self['color'] 432 else: 433 return self['color']
434
435 - def get_charge(self):
436 """Return the charge code with a correct minus sign""" 437 438 if not self['is_part']: 439 return - self['charge'] 440 else: 441 return self['charge']
442
443 - def get_anti_charge(self):
444 """Return the charge code of the antiparticle with a correct minus sign 445 """ 446 447 if self['is_part']: 448 return - self['charge'] 449 else: 450 return self['charge']
451
452 - def get_name(self):
453 """Return the name if particle, antiname if antiparticle""" 454 455 if not self['is_part'] and not self['self_antipart']: 456 return self['antiname'] 457 else: 458 return self['name']
459
460 - def get_helicity_states(self, allow_reverse=True):
461 """Return a list of the helicity states for the onshell particle""" 462 463 spin = self.get('spin') 464 if spin ==1: 465 # Scalar 466 res = [ 0 ] 467 elif spin == 2: 468 # Spinor 469 res = [ -1, 1 ] 470 elif spin == 3 and self.get('mass').lower() == 'zero': 471 # Massless vector 472 res = [ -1, 1 ] 473 elif spin == 3: 474 # Massive vector 475 res = [ -1, 0, 1 ] 476 elif spin == 4 and self.get('mass').lower() == 'zero': 477 # Massless tensor 478 res = [-3, 3] 479 elif spin == 4: 480 # Massive tensor 481 res = [-3, -1, 1, 3] 482 elif spin == 5 and self.get('mass').lower() == 'zero': 483 # Massless tensor 484 res = [-2, -1, 1, 2] 485 elif spin in [5, 99]: 486 # Massive tensor 487 res = [-2, -1, 0, 1, 2] 488 else: 489 raise self.PhysicsObjectError, \ 490 "No helicity state assignment for spin %d particles" % spin 491 492 if allow_reverse and not self.get('is_part'): 493 res.reverse() 494 495 496 return res
497
498 - def is_fermion(self):
499 """Returns True if this is a fermion, False if boson""" 500 501 return self['spin'] % 2 == 0
502
503 - def is_boson(self):
504 """Returns True if this is a boson, False if fermion""" 505 506 return self['spin'] % 2 == 1
507
508 #=============================================================================== 509 # ParticleList 510 #=============================================================================== 511 -class ParticleList(PhysicsObjectList):
512 """A class to store lists of particles.""" 513
514 - def is_valid_element(self, obj):
515 """Test if object obj is a valid Particle for the list.""" 516 return isinstance(obj, Particle)
517
518 - def get_copy(self, name):
519 """Try to find a particle with the given name. Check both name 520 and antiname. If a match is found, return the a copy of the 521 corresponding particle (first one in the list), with the 522 is_part flag set accordingly. None otherwise.""" 523 524 assert isinstance(name, str) 525 526 part = self.find_name(name) 527 if not part: 528 # Then try to look for a particle with that PDG 529 try: 530 pdg = int(name) 531 except ValueError: 532 return None 533 534 for p in self: 535 if p.get_pdg_code()==pdg: 536 part = copy.copy(p) 537 part.set('is_part', True) 538 return part 539 elif p.get_anti_pdg_code()==pdg: 540 part = copy.copy(p) 541 part.set('is_part', False) 542 return part 543 544 return None 545 part = copy.copy(part) 546 547 if part.get('name') == name: 548 part.set('is_part', True) 549 return part 550 elif part.get('antiname') == name: 551 part.set('is_part', False) 552 return part 553 return None
554
555 - def find_name(self, name):
556 """Try to find a particle with the given name. Check both name 557 and antiname. If a match is found, return the a copy of the 558 corresponding particle (first one in the list), with the 559 is_part flag set accordingly. None otherwise.""" 560 561 assert isinstance(name, str), "%s is not a valid string" % str(name) 562 563 for part in self: 564 if part.get('name') == name: 565 return part 566 elif part.get('antiname') == name: 567 return part 568 569 return None
570
571 - def generate_ref_dict(self):
572 """Generate a dictionary of part/antipart pairs (as keys) and 573 0 (as value)""" 574 575 ref_dict_to0 = {} 576 577 for part in self: 578 ref_dict_to0[(part.get_pdg_code(), part.get_anti_pdg_code())] = [0] 579 ref_dict_to0[(part.get_anti_pdg_code(), part.get_pdg_code())] = [0] 580 581 return ref_dict_to0
582
583 - def generate_dict(self):
584 """Generate a dictionary from particle id to particle. 585 Include antiparticles. 586 """ 587 588 particle_dict = {} 589 590 for particle in self: 591 particle_dict[particle.get('pdg_code')] = particle 592 if not particle.get('self_antipart'): 593 antipart = copy.deepcopy(particle) 594 antipart.set('is_part', False) 595 particle_dict[antipart.get_pdg_code()] = antipart 596 597 return particle_dict
598
599 600 #=============================================================================== 601 # Interaction 602 #=============================================================================== 603 -class Interaction(PhysicsObject):
604 """The interaction object containing the whole set of information 605 required to univocally characterize a given type of physical interaction: 606 607 particles: a list of particle ids 608 color: a list of string describing all the color structures involved 609 lorentz: a list of variable names describing all the Lorentz structure 610 involved 611 couplings: dictionary listing coupling variable names. The key is a 612 2-tuple of integers referring to color and Lorentz structures 613 orders: dictionary listing order names (as keys) with their value 614 """ 615 616 sorted_keys = ['id', 'particles', 'color', 'lorentz', 'couplings', 617 'orders','loop_particles','type','perturbation_type'] 618
619 - def default_setup(self):
620 """Default values for all properties""" 621 622 self['id'] = 0 623 self['particles'] = [] 624 self['color'] = [] 625 self['lorentz'] = [] 626 self['couplings'] = { (0, 0):'none'} 627 self['orders'] = {} 628 # The type of interactions can be 'base', 'UV' or 'R2'. 629 # For 'UV' or 'R2', one can always specify the loop it corresponds 630 # to by a tag in the second element of the list. If the tag is an 631 # empty list, then the R2/UV interaction will be recognized only 632 # based on the nature of the identity of the particles branching 633 # off the loop and the loop orders. 634 # Otherwise, the tag can be specified and it will be used when 635 # identifying the R2/UV interaction corresponding to a given loop 636 # generated. 637 # The format is [(lp1ID,int1ID),(lp1ID,int1ID),(lp1ID,int1ID),etc...] 638 # Example of a tag for the following loop 639 # 640 # ___34_____ The ';' line is a gluon with ID 21 641 # 45/ ; The '|' line is a d-quark with ID 1 642 # ------< ; The numbers are the interactions ID 643 # \___;______ The tag for this loop would be: 644 # 12 ((21,34),(1,45),(1,12)) 645 # 646 # This tag is equivalent to all its cyclic permutations. This is why 647 # it must be specified in the canonical order which is defined with 648 # by putting in front of the tag the lowest 2-tuple it contains. 649 # (the order relation is defined by comparing the particle ID first 650 # and the interaction ID after in case the particle ID are the same). 651 # In case there are two identical lowest 2-tuple in the tag, the 652 # tag chosen is such that it has the lowest second 2-tuple. The procedure 653 # is repeated again with the subsequent 2-tuple until there is only 654 # one cyclic permutation remaining and the ambiguity is resolved. 655 # This insures to have one unique unambiguous canonical tag chosen. 656 # In the example above, it would be: 657 # ((1,12),(21,34),(1,45)) 658 # PS: Notice that in the UFO model, the tag-information is limited to 659 # the minimally relevant one which are the loop particles specified in 660 # in the attribute below. In this case, 'loop_particles' is the list of 661 # all the loops giving this same counterterm contribution. 662 # Each loop being represented by a set of the PDG of the particles 663 # (not repeated) constituting it. In the example above, it would simply 664 # be (1,21). In the UFO, if the loop particles are not specified then 665 # MG5 will account for this counterterm only once per concerned vertex. 666 # Taking the example of the three gluon vertex counterterm, one can 667 # possibly have in the ufo: 668 # VertexB = blabla, loop_particles = (b) 669 # VertexT = blabla, loop_particles = (t) 670 # or 671 # VertexALL = blabla, loop_particles = () 672 # In the first case UFO specifies the specific counterterm to the three- 673 # gluon loop with the bottom running in (VertexB) and with the top running 674 # in (VertexT). So MG5 will associate these counterterm vertices once to 675 # each of the two loop. 676 # In the case where UFO defined VertexALL, then whenever MG5 encounters 677 # a triangle three-gluon loop (say the bottom one), it will associate to 678 # it the vertex VertexALL but will not do so again when encountering the 679 # same loop with the top quark running in. This, because it assumes that 680 # the UFO vertexALL comprises all contributions already. 681 682 self['loop_particles']=[[]] 683 self['type'] = 'base' 684 self['perturbation_type'] = None
685
686 - def filter(self, name, value):
687 """Filter for valid interaction property values.""" 688 689 if name == 'id': 690 #Should be an integer 691 if not isinstance(value, int): 692 raise self.PhysicsObjectError, \ 693 "%s is not a valid integer" % str(value) 694 695 if name == 'particles': 696 #Should be a list of valid particle names 697 if not isinstance(value, ParticleList): 698 raise self.PhysicsObjectError, \ 699 "%s is not a valid list of particles" % str(value) 700 701 if name == 'perturbation_type': 702 if value!=None and not isinstance(value, str): 703 raise self.PhysicsObjectError, \ 704 "%s is not a valid string" % str(value) 705 706 if name == 'type': 707 #Should be a string 708 if not isinstance(value, str): 709 raise self.PhysicsObjectError, \ 710 "%s is not a valid string" % str(value) 711 if name == 'loop_particles': 712 if isinstance(value,list): 713 for l in value: 714 if isinstance(l,list): 715 for part in l: 716 if not isinstance(part,int): 717 raise self.PhysicsObjectError, \ 718 "%s is not a valid integer" % str(part) 719 if part<0: 720 raise self.PhysicsObjectError, \ 721 "%s is not a valid positive integer" % str(part) 722 723 if name == 'orders': 724 #Should be a dict with valid order names ask keys and int as values 725 if not isinstance(value, dict): 726 raise self.PhysicsObjectError, \ 727 "%s is not a valid dict for coupling orders" % \ 728 str(value) 729 for order in value.keys(): 730 if not isinstance(order, str): 731 raise self.PhysicsObjectError, \ 732 "%s is not a valid string" % str(order) 733 if not isinstance(value[order], int): 734 raise self.PhysicsObjectError, \ 735 "%s is not a valid integer" % str(value[order]) 736 737 if name in ['color']: 738 #Should be a list of list strings 739 if not isinstance(value, list): 740 raise self.PhysicsObjectError, \ 741 "%s is not a valid list of Color Strings" % str(value) 742 for mycolstring in value: 743 if not isinstance(mycolstring, color.ColorString): 744 raise self.PhysicsObjectError, \ 745 "%s is not a valid list of Color Strings" % str(value) 746 747 if name in ['lorentz']: 748 #Should be a list of list strings 749 if not isinstance(value, list): 750 raise self.PhysicsObjectError, \ 751 "%s is not a valid list of strings" % str(value) 752 for mystr in value: 753 if not isinstance(mystr, str): 754 raise self.PhysicsObjectError, \ 755 "%s is not a valid string" % str(mystr) 756 757 if name == 'couplings': 758 #Should be a dictionary of strings with (i,j) keys 759 if not isinstance(value, dict): 760 raise self.PhysicsObjectError, \ 761 "%s is not a valid dictionary for couplings" % \ 762 str(value) 763 764 for key in value.keys(): 765 if not isinstance(key, tuple): 766 raise self.PhysicsObjectError, \ 767 "%s is not a valid tuple" % str(key) 768 if len(key) != 2: 769 raise self.PhysicsObjectError, \ 770 "%s is not a valid tuple with 2 elements" % str(key) 771 if not isinstance(key[0], int) or not isinstance(key[1], int): 772 raise self.PhysicsObjectError, \ 773 "%s is not a valid tuple of integer" % str(key) 774 if not isinstance(value[key], str): 775 raise self.PhysicsObjectError, \ 776 "%s is not a valid string" % value[key] 777 778 return True
779
780 - def get_sorted_keys(self):
781 """Return particle property names as a nicely sorted list.""" 782 783 return self.sorted_keys
784
785 - def is_perturbating(self, orders_considered):
786 """ Returns if this interaction comes from the perturbation of one of 787 the order listed in the argument """ 788 789 if self['perturbation_type']==None: 790 return True 791 else: 792 return (self['perturbation_type'] in orders_considered)
793
794 - def is_R2(self):
795 """ Returns if the interaction is of R2 type.""" 796 797 # Precaution only useful because some tests have a predefined model 798 # bypassing the default_setup and for which type was not defined. 799 if 'type' in self.keys(): 800 return (len(self['type'])>=2 and self['type'][:2]=='R2') 801 else: 802 return False
803
804 - def is_UV(self):
805 """ Returns if the interaction is of UV type.""" 806 807 # Precaution only useful because some tests have a predefined model 808 # bypassing the default_setup and for which type was not defined. 809 if 'type' in self.keys(): 810 return (len(self['type'])>=2 and self['type'][:2]=='UV') 811 else: 812 return False
813
814 - def is_UVmass(self):
815 """ Returns if the interaction is of UVmass type.""" 816 817 # Precaution only useful because some tests have a predefined model 818 # bypassing the default_setup and for which type was not defined. 819 if 'type' in self.keys(): 820 return (len(self['type'])>=6 and self['type'][:6]=='UVmass') 821 else: 822 return False
823
824 - def is_UVloop(self):
825 """ Returns if the interaction is of UVmass type.""" 826 827 # Precaution only useful because some tests have a predefined model 828 # bypassing the default_setup and for which type was not defined. 829 if 'type' in self.keys(): 830 return (len(self['type'])>=6 and self['type'][:6]=='UVloop') 831 else: 832 return False
833
834 - def is_UVtree(self):
835 """ Returns if the interaction is of UVmass type.""" 836 837 # Precaution only useful because some tests have a predefined model 838 # bypassing the default_setup and for which type was not defined. 839 if 'type' in self.keys(): 840 return (len(self['type'])>=6 and self['type'][:6]=='UVtree') 841 else: 842 return False
843
844 - def is_UVCT(self):
845 """ Returns if the interaction is of the UVCT type which means that 846 it has been selected as a possible UV counterterm interaction for this 847 process. Such interactions are marked by having the 'UVCT_SPECIAL' order 848 key in their orders.""" 849 850 # Precaution only useful because some tests have a predefined model 851 # bypassing the default_setup and for which type was not defined. 852 if 'UVCT_SPECIAL' in self['orders'].keys(): 853 return True 854 else: 855 return False
856
857 - def get_epsilon_order(self):
858 """ Returns 0 if this interaction contributes to the finite part of the 859 amplitude and 1 (2) is it contributes to its single (double) pole """ 860 861 if 'type' in self.keys(): 862 if '1eps' in self['type']: 863 return 1 864 elif '2eps' in self['type']: 865 return 2 866 else: 867 return 0 868 else: 869 return 0
870
871 - def generate_dict_entries(self, ref_dict_to0, ref_dict_to1):
872 """Add entries corresponding to the current interactions to 873 the reference dictionaries (for n>0 and n-1>1)""" 874 875 # Create n>0 entries. Format is (p1,p2,p3,...):interaction_id. 876 # We are interested in the unordered list, so use sorted() 877 878 pdg_tuple = tuple(sorted([p.get_pdg_code() for p in self['particles']])) 879 if pdg_tuple not in ref_dict_to0.keys(): 880 ref_dict_to0[pdg_tuple] = [self['id']] 881 else: 882 ref_dict_to0[pdg_tuple].append(self['id']) 883 884 # Create n-1>1 entries. Note that, in the n-1 > 1 dictionary, 885 # the n-1 entries should have opposite sign as compared to 886 # interaction, since the interaction has outgoing particles, 887 # while in the dictionary we treat the n-1 particles as 888 # incoming 889 890 for part in self['particles']: 891 892 # We are interested in the unordered list, so use sorted() 893 pdg_tuple = tuple(sorted([p.get_pdg_code() for (i, p) in \ 894 enumerate(self['particles']) if \ 895 i != self['particles'].index(part)])) 896 pdg_part = part.get_anti_pdg_code() 897 if pdg_tuple in ref_dict_to1.keys(): 898 if (pdg_part, self['id']) not in ref_dict_to1[pdg_tuple]: 899 ref_dict_to1[pdg_tuple].append((pdg_part, self['id'])) 900 else: 901 ref_dict_to1[pdg_tuple] = [(pdg_part, self['id'])]
902
903 - def get_WEIGHTED_order(self, model):
904 """Get the WEIGHTED order for this interaction, for equivalent 905 3-particle vertex. Note that it can be fractional.""" 906 907 return float(sum([model.get('order_hierarchy')[key]*self.get('orders')[key]\ 908 for key in self.get('orders')]))/ \ 909 max((len(self.get('particles'))-2), 1)
910
911 - def __str__(self):
912 """String representation of an interaction. Outputs valid Python 913 with improved format. Overrides the PhysicsObject __str__ to only 914 display PDG code of involved particles.""" 915 916 mystr = '{\n' 917 918 for prop in self.get_sorted_keys(): 919 if isinstance(self[prop], str): 920 mystr = mystr + ' \'' + prop + '\': \'' + \ 921 self[prop] + '\',\n' 922 elif isinstance(self[prop], float): 923 mystr = mystr + ' \'' + prop + '\': %.2f,\n' % self[prop] 924 elif isinstance(self[prop], ParticleList): 925 mystr = mystr + ' \'' + prop + '\': [%s],\n' % \ 926 ','.join([str(part.get_pdg_code()) for part in self[prop]]) 927 else: 928 mystr = mystr + ' \'' + prop + '\': ' + \ 929 repr(self[prop]) + ',\n' 930 mystr = mystr.rstrip(',\n') 931 mystr = mystr + '\n}' 932 933 return mystr
934
935 #=============================================================================== 936 # InteractionList 937 #=============================================================================== 938 -class InteractionList(PhysicsObjectList):
939 """A class to store lists of interactionss.""" 940
941 - def is_valid_element(self, obj):
942 """Test if object obj is a valid Interaction for the list.""" 943 944 return isinstance(obj, Interaction)
945
946 - def generate_ref_dict(self,useR2UV=False, useUVCT=False):
947 """Generate the reference dictionaries from interaction list. 948 Return a list where the first element is the n>0 dictionary and 949 the second one is n-1>1.""" 950 951 ref_dict_to0 = {} 952 ref_dict_to1 = {} 953 buffer = {} 954 955 for inter in self: 956 if useR2UV or (not inter.is_UV() and not inter.is_R2() and \ 957 not inter.is_UVCT()): 958 inter.generate_dict_entries(ref_dict_to0, ref_dict_to1) 959 if useUVCT and inter.is_UVCT(): 960 inter.generate_dict_entries(ref_dict_to0, ref_dict_to1) 961 962 return [ref_dict_to0, ref_dict_to1]
963
964 - def generate_dict(self):
965 """Generate a dictionary from interaction id to interaction. 966 """ 967 968 interaction_dict = {} 969 970 for inter in self: 971 interaction_dict[inter.get('id')] = inter 972 973 return interaction_dict
974
975 - def synchronize_interactions_with_particles(self, particle_dict):
976 """Make sure that the particles in the interactions are those 977 in the particle_dict, and that there are no interactions 978 refering to particles that don't exist. To be called when the 979 particle_dict is updated in a model. 980 """ 981 982 iint = 0 983 while iint < len(self): 984 inter = self[iint] 985 particles = inter.get('particles') 986 try: 987 for ipart, part in enumerate(particles): 988 particles[ipart] = particle_dict[part.get_pdg_code()] 989 iint += 1 990 except KeyError: 991 # This interaction has particles that no longer exist 992 self.pop(iint)
993
994 - def get_type(self, type):
995 """ return all interactions in the list of type 'type' """ 996 return InteractionList([int for int in self if int.get('type')==type])
997
998 - def get_R2(self):
999 """ return all interactions in the list of type R2 """ 1000 return InteractionList([int for int in self if int.is_R2()])
1001
1002 - def get_UV(self):
1003 """ return all interactions in the list of type UV """ 1004 return InteractionList([int for int in self if int.is_UV()])
1005
1006 - def get_UVmass(self):
1007 """ return all interactions in the list of type UVmass """ 1008 return InteractionList([int for int in self if int.is_UVmass()])
1009
1010 - def get_UVtree(self):
1011 """ return all interactions in the list of type UVtree """ 1012 return InteractionList([int for int in self if int.is_UVtree()])
1013
1014 - def get_UVloop(self):
1015 """ return all interactions in the list of type UVloop """ 1016 return InteractionList([int for int in self if int.is_UVloop()])
1017
1018 #=============================================================================== 1019 # Model 1020 #=============================================================================== 1021 -class Model(PhysicsObject):
1022 """A class to store all the model information.""" 1023 1024 mg5_name = False #store if particle name follow mg5 convention 1025
1026 - def default_setup(self):
1027 1028 self['name'] = "" 1029 self['particles'] = ParticleList() 1030 self['interactions'] = InteractionList() 1031 self['parameters'] = None 1032 self['functions'] = None 1033 self['couplings'] = None 1034 self['lorentz'] = None 1035 self['particle_dict'] = {} 1036 self['interaction_dict'] = {} 1037 self['ref_dict_to0'] = {} 1038 self['ref_dict_to1'] = {} 1039 self['got_majoranas'] = None 1040 self['order_hierarchy'] = {} 1041 self['conserved_charge'] = set() 1042 self['coupling_orders'] = None 1043 self['expansion_order'] = None 1044 self['version_tag'] = None # position of the directory (for security) 1045 self['gauge'] = [0, 1] 1046 self['case_sensitive'] = True
1047 # attribute which might be define if needed 1048 #self['name2pdg'] = {'name': pdg} 1049 1050 1051
1052 - def filter(self, name, value):
1053 """Filter for model property values""" 1054 1055 if name in ['name']: 1056 if not isinstance(value, str): 1057 raise self.PhysicsObjectError, \ 1058 "Object of type %s is not a string" %type(value) 1059 1060 elif name == 'particles': 1061 if not isinstance(value, ParticleList): 1062 raise self.PhysicsObjectError, \ 1063 "Object of type %s is not a ParticleList object" % \ 1064 type(value) 1065 elif name == 'interactions': 1066 if not isinstance(value, InteractionList): 1067 raise self.PhysicsObjectError, \ 1068 "Object of type %s is not a InteractionList object" % \ 1069 type(value) 1070 elif name == 'particle_dict': 1071 if not isinstance(value, dict): 1072 raise self.PhysicsObjectError, \ 1073 "Object of type %s is not a dictionary" % \ 1074 type(value) 1075 elif name == 'interaction_dict': 1076 if not isinstance(value, dict): 1077 raise self.PhysicsObjectError, \ 1078 "Object of type %s is not a dictionary" % type(value) 1079 1080 elif name == 'ref_dict_to0': 1081 if not isinstance(value, dict): 1082 raise self.PhysicsObjectError, \ 1083 "Object of type %s is not a dictionary" % type(value) 1084 1085 elif name == 'ref_dict_to1': 1086 if not isinstance(value, dict): 1087 raise self.PhysicsObjectError, \ 1088 "Object of type %s is not a dictionary" % type(value) 1089 1090 elif name == 'got_majoranas': 1091 if not (isinstance(value, bool) or value == None): 1092 raise self.PhysicsObjectError, \ 1093 "Object of type %s is not a boolean" % type(value) 1094 1095 elif name == 'conserved_charge': 1096 if not (isinstance(value, set)): 1097 raise self.PhysicsObjectError, \ 1098 "Object of type %s is not a set" % type(value) 1099 1100 elif name == 'version_tag': 1101 if not (isinstance(value, str)): 1102 raise self.PhysicsObjectError, \ 1103 "Object of type %s is not a string" % type(value) 1104 1105 elif name == 'order_hierarchy': 1106 if not isinstance(value, dict): 1107 raise self.PhysicsObjectError, \ 1108 "Object of type %s is not a dictionary" % \ 1109 type(value) 1110 for key in value.keys(): 1111 if not isinstance(value[key],int): 1112 raise self.PhysicsObjectError, \ 1113 "Object of type %s is not an integer" % \ 1114 type(value[key]) 1115 elif name == 'gauge': 1116 if not (isinstance(value, list)): 1117 raise self.PhysicsObjectError, \ 1118 "Object of type %s is not a list" % type(value) 1119 1120 elif name == 'case_sensitive': 1121 if not value in [True ,False]: 1122 raise self.PhysicsObjectError, \ 1123 "Object of type %s is not a boolean" % type(value) 1124 1125 1126 return True
1127
1128 - def get(self, name):
1129 """Get the value of the property name.""" 1130 1131 if (name == 'ref_dict_to0' or name == 'ref_dict_to1') and \ 1132 not self[name]: 1133 if self['interactions']: 1134 [self['ref_dict_to0'], self['ref_dict_to1']] = \ 1135 self['interactions'].generate_ref_dict() 1136 self['ref_dict_to0'].update( 1137 self['particles'].generate_ref_dict()) 1138 1139 if (name == 'particle_dict') and not self[name]: 1140 if self['particles']: 1141 self['particle_dict'] = self['particles'].generate_dict() 1142 if self['interactions']: 1143 self['interactions'].synchronize_interactions_with_particles(\ 1144 self['particle_dict']) 1145 if name == 'modelpath': 1146 modeldir = self.get('version_tag').rsplit('##',1)[0] 1147 if os.path.exists(modeldir): 1148 modeldir = os.path.expanduser(modeldir) 1149 return modeldir 1150 else: 1151 raise Exception, "path %s not valid anymore." % modeldir 1152 #modeldir = os.path.join(os.path.dirname(modeldir), 1153 # os.path.basename(modeldir).rsplit("-",1)[0]) 1154 #if os.path.exists(modeldir): 1155 # return modeldir 1156 #raise Exception, 'Invalid Path information: %s' % self.get('version_tag') 1157 elif name == 'modelpath+restriction': 1158 modeldir = self.get('version_tag').rsplit('##',1)[0] 1159 modelname = self['name'] 1160 if not os.path.exists(modeldir): 1161 raise Exception, "path %s not valid anymore" % modeldir 1162 modeldir = os.path.dirname(modeldir) 1163 modeldir = pjoin(modeldir, modelname) 1164 modeldir = os.path.expanduser(modeldir) 1165 return modeldir 1166 elif name == 'restrict_name': 1167 modeldir = self.get('version_tag').rsplit('##',1)[0] 1168 modelname = self['name'] 1169 basename = os.path.basename(modeldir) 1170 restriction = modelname[len(basename)+1:] 1171 return restriction 1172 1173 if (name == 'interaction_dict') and not self[name]: 1174 if self['interactions']: 1175 self['interaction_dict'] = self['interactions'].generate_dict() 1176 1177 if (name == 'got_majoranas') and self[name] == None: 1178 if self['particles']: 1179 self['got_majoranas'] = self.check_majoranas() 1180 1181 if (name == 'coupling_orders') and self[name] == None: 1182 if self['interactions']: 1183 self['coupling_orders'] = self.get_coupling_orders() 1184 1185 if (name == 'order_hierarchy') and not self[name]: 1186 if self['interactions']: 1187 self['order_hierarchy'] = self.get_order_hierarchy() 1188 1189 if (name == 'expansion_order') and self[name] == None: 1190 if self['interactions']: 1191 self['expansion_order'] = \ 1192 dict([(order, -1) for order in self.get('coupling_orders')]) 1193 1194 if (name == 'name2pdg') and 'name2pdg' not in self: 1195 self['name2pdg'] = {} 1196 for p in self.get('particles'): 1197 self['name2pdg'][p.get('antiname')] = -1*p.get('pdg_code') 1198 self['name2pdg'][p.get('name')] = p.get('pdg_code') 1199 1200 return Model.__bases__[0].get(self, name) # call the mother routine
1201
1202 - def set(self, name, value, force = False):
1203 """Special set for particles and interactions - need to 1204 regenerate dictionaries.""" 1205 1206 if name == 'particles': 1207 # Ensure no doublets in particle list 1208 make_unique(value) 1209 # Reset dictionaries 1210 self['particle_dict'] = {} 1211 self['ref_dict_to0'] = {} 1212 self['got_majoranas'] = None 1213 1214 if name == 'interactions': 1215 # Ensure no doublets in interaction list 1216 make_unique(value) 1217 # Reset dictionaries 1218 self['interaction_dict'] = {} 1219 self['ref_dict_to1'] = {} 1220 self['ref_dict_to0'] = {} 1221 self['got_majoranas'] = None 1222 self['coupling_orders'] = None 1223 self['order_hierarchy'] = {} 1224 self['expansion_order'] = None 1225 1226 if name == 'name2pdg': 1227 self['name2pgg'] = value 1228 return 1229 1230 result = Model.__bases__[0].set(self, name, value, force) # call the mother routine 1231 1232 if name == 'particles': 1233 # Recreate particle_dict 1234 self.get('particle_dict') 1235 1236 return result
1237
1238 - def actualize_dictionaries(self):
1239 """This function actualizes the dictionaries""" 1240 1241 [self['ref_dict_to0'], self['ref_dict_to1']] = \ 1242 self['interactions'].generate_ref_dict() 1243 self['ref_dict_to0'].update( 1244 self['particles'].generate_ref_dict())
1245
1246 - def get_sorted_keys(self):
1247 """Return process property names as a nicely sorted list.""" 1248 1249 return ['name', 'particles', 'parameters', 'interactions', 1250 'couplings','lorentz', 'gauge']
1251
1252 - def get_particle(self, id):
1253 """Return the particle corresponding to the id / name""" 1254 1255 try: 1256 return self["particle_dict"][id] 1257 except Exception: 1258 if isinstance(id, int): 1259 try: 1260 return self.get("particle_dict")[id] 1261 except Exception, error: 1262 return None 1263 else: 1264 if not hasattr(self, 'name2part'): 1265 self.create_name2part() 1266 try: 1267 return self.name2part[id] 1268 except: 1269 return None
1270
1271 - def create_name2part(self):
1272 """create a dictionary name 2 part""" 1273 1274 self.name2part = {} 1275 for part in self.get("particle_dict").values(): 1276 self.name2part[part.get('name')] = part 1277 self.name2part[part.get('antiname')] = part
1278
1279 - def get_lorentz(self, name):
1280 """return the lorentz object from the associate name""" 1281 if hasattr(self, 'lorentz_name2obj'): 1282 return self.lorentz_name2obj[name] 1283 else: 1284 self.create_lorentz_dict() 1285 return self.lorentz_name2obj[name]
1286
1287 - def create_lorentz_dict(self):
1288 """create the dictionary linked to the lorentz structure""" 1289 self.lorentz_name2obj = {} 1290 self.lorentz_expr2name = {} 1291 if not self.get('lorentz'): 1292 return 1293 for lor in self.get('lorentz'): 1294 self.lorentz_name2obj[lor.name] = lor 1295 self.lorentz_expr2name[lor.structure] = lor.name
1296
1297 - def get_interaction(self, id):
1298 """Return the interaction corresponding to the id""" 1299 1300 try: 1301 return self.get("interaction_dict")[id] 1302 except Exception: 1303 return None
1304
1305 - def get_parameter(self, name):
1306 """Return the parameter associated to the name NAME""" 1307 1308 # If information is saved 1309 if hasattr(self, 'parameters_dict') and self.parameters_dict: 1310 try: 1311 return self.parameters_dict[name] 1312 except Exception: 1313 # try to reload it before crashing 1314 pass 1315 1316 # Else first build the dictionary 1317 self.parameters_dict = {} 1318 for data in self['parameters'].values(): 1319 [self.parameters_dict.__setitem__(p.name,p) for p in data] 1320 1321 return self.parameters_dict[name]
1322
1323 - def get_coupling_orders(self):
1324 """Determine the coupling orders of the model""" 1325 return set(sum([i.get('orders').keys() for i in \ 1326 self.get('interactions')], []))
1327
1328 - def get_order_hierarchy(self):
1329 """Set a default order hierarchy for the model if not set by the UFO.""" 1330 # Set coupling hierachy 1331 hierarchy = dict([(order, 1) for order in self.get('coupling_orders')]) 1332 # Special case for only QCD and QED couplings, unless already set 1333 if self.get('coupling_orders') == set(['QCD', 'QED']): 1334 hierarchy['QED'] = 2 1335 return hierarchy
1336 1337
1338 - def get_nflav(self):
1339 """returns the number of light quark flavours in the model.""" 1340 return len([p for p in self.get('particles') \ 1341 if p['spin'] == 2 and p['is_part'] and \ 1342 p ['color'] != 1 and p['mass'].lower() == 'zero'])
1343 1344
1345 - def get_particles_hierarchy(self):
1346 """Returns the order hierarchies of the model and the 1347 particles which have interactions in at least this hierarchy 1348 (used in find_optimal_process_orders in MultiProcess diagram 1349 generation): 1350 1351 Check the coupling hierarchy of the model. Assign all 1352 particles to the different coupling hierarchies so that a 1353 particle is considered to be in the highest hierarchy (i.e., 1354 with lowest value) where it has an interaction. 1355 """ 1356 1357 # Find coupling orders in model 1358 coupling_orders = self.get('coupling_orders') 1359 # Loop through the different coupling hierarchy values, so we 1360 # start with the most dominant and proceed to the least dominant 1361 hierarchy = sorted(list(set([self.get('order_hierarchy')[k] for \ 1362 k in coupling_orders]))) 1363 1364 # orders is a rising list of the lists of orders with a given hierarchy 1365 orders = [] 1366 for value in hierarchy: 1367 orders.append([ k for (k, v) in \ 1368 self.get('order_hierarchy').items() if \ 1369 v == value ]) 1370 1371 # Extract the interaction that correspond to the different 1372 # coupling hierarchies, and the corresponding particles 1373 interactions = [] 1374 particles = [] 1375 for iorder, order in enumerate(orders): 1376 sum_orders = sum(orders[:iorder+1], []) 1377 sum_interactions = sum(interactions[:iorder], []) 1378 sum_particles = sum([list(p) for p in particles[:iorder]], []) 1379 # Append all interactions that have only orders with at least 1380 # this hierarchy 1381 interactions.append([i for i in self.get('interactions') if \ 1382 not i in sum_interactions and \ 1383 not any([k not in sum_orders for k in \ 1384 i.get('orders').keys()])]) 1385 # Append the corresponding particles, excluding the 1386 # particles that have already been added 1387 particles.append(set(sum([[p.get_pdg_code() for p in \ 1388 inter.get('particles') if \ 1389 p.get_pdg_code() not in sum_particles] \ 1390 for inter in interactions[-1]], []))) 1391 1392 return particles, hierarchy
1393
1394 - def get_max_WEIGHTED(self):
1395 """Return the maximum WEIGHTED order for any interaction in the model, 1396 for equivalent 3-particle vertices. Note that it can be fractional.""" 1397 1398 return max([inter.get_WEIGHTED_order(self) for inter in \ 1399 self.get('interactions')])
1400 1401
1402 - def check_majoranas(self):
1403 """Return True if there is fermion flow violation, False otherwise""" 1404 1405 if any([part.is_fermion() and part.get('self_antipart') \ 1406 for part in self.get('particles')]): 1407 return True 1408 1409 # No Majorana particles, but may still be fermion flow 1410 # violating interactions 1411 for inter in self.get('interactions'): 1412 # Do not look at UV Wfct renormalization counterterms 1413 if len(inter.get('particles'))==1: 1414 continue 1415 fermions = [p for p in inter.get('particles') if p.is_fermion()] 1416 for i in range(0, len(fermions), 2): 1417 if fermions[i].get('is_part') == \ 1418 fermions[i+1].get('is_part'): 1419 # This is a fermion flow violating interaction 1420 return True 1421 # No fermion flow violations 1422 return False
1423
1424 - def reset_dictionaries(self):
1425 """Reset all dictionaries and got_majoranas. This is necessary 1426 whenever the particle or interaction content has changed. If 1427 particles or interactions are set using the set routine, this 1428 is done automatically.""" 1429 1430 self['particle_dict'] = {} 1431 self['ref_dict_to0'] = {} 1432 self['got_majoranas'] = None 1433 self['interaction_dict'] = {} 1434 self['ref_dict_to1'] = {} 1435 self['ref_dict_to0'] = {}
1436
1438 """Change the name of the particles such that all SM and MSSM particles 1439 follows the MG convention""" 1440 1441 self.mg5_name = True 1442 1443 # Check that default name/antiname is not already use 1444 def check_name_free(self, name): 1445 """ check if name is not use for a particle in the model if it is 1446 raise an MadGraph5error""" 1447 part = self['particles'].find_name(name) 1448 if part: 1449 error_text = \ 1450 '%s particles with pdg code %s is in conflict with MG ' + \ 1451 'convention name for particle %s.\n Use -modelname in order ' + \ 1452 'to use the particles name defined in the model and not the ' + \ 1453 'MadGraph5_aMC@NLO convention' 1454 1455 raise MadGraph5Error, error_text % \ 1456 (part.get_name(), part.get_pdg_code(), pdg)
1457 1458 default = self.load_default_name() 1459 1460 for pdg in default.keys(): 1461 part = self.get_particle(pdg) 1462 if not part: 1463 continue 1464 antipart = self.get_particle(-pdg) 1465 name = part.get_name() 1466 if name != default[pdg]: 1467 check_name_free(self, default[pdg]) 1468 if part.get('is_part'): 1469 part.set('name', default[pdg]) 1470 if antipart: 1471 antipart.set('name', default[pdg]) 1472 else: 1473 part.set('antiname', default[pdg]) 1474 else: 1475 part.set('antiname', default[pdg]) 1476 if antipart: 1477 antipart.set('antiname', default[pdg]) 1478 1479 #additional check for the Higgs in the mssm 1480 if self.get('name') == 'mssm' or self.get('name').startswith('mssm-'): 1481 part = self.get_particle(25) 1482 part.set('name', 'h1') 1483 part.set('antiname', 'h1')
1484 1485 1486
1487 - def change_parameter_name_with_prefix(self, prefix='mdl_'):
1488 """ Change all model parameter by a given prefix. 1489 Modify the parameter if some of them are identical up to the case""" 1490 1491 lower_dict={} 1492 duplicate = set() 1493 keys = self.get('parameters').keys() 1494 for key in keys: 1495 for param in self['parameters'][key]: 1496 lower_name = param.name.lower() 1497 if not lower_name: 1498 continue 1499 try: 1500 lower_dict[lower_name].append(param) 1501 except KeyError: 1502 lower_dict[lower_name] = [param] 1503 else: 1504 duplicate.add(lower_name) 1505 logger.debug('%s is defined both as lower case and upper case.' 1506 % lower_name) 1507 1508 if prefix == '' and not duplicate: 1509 return 1510 1511 re_expr = r'''\b(%s)\b''' 1512 to_change = [] 1513 change={} 1514 # recast all parameter in prefix_XX 1515 for key in keys: 1516 for param in self['parameters'][key]: 1517 value = param.name.lower() 1518 if value in ['as','mu_r', 'zero','aewm1','g']: 1519 continue 1520 elif value.startswith(prefix): 1521 continue 1522 elif value in duplicate: 1523 continue # handle later 1524 elif value: 1525 change[param.name] = '%s%s' % (prefix,param.name) 1526 to_change.append(param.name) 1527 param.name = change[param.name] 1528 1529 for value in duplicate: 1530 for i, var in enumerate(lower_dict[value]): 1531 to_change.append(var.name) 1532 new_name = '%s%s%s' % (prefix, var.name.lower(), 1533 ('__%d'%(i+1) if i>0 else '')) 1534 change[var.name] = new_name 1535 var.name = new_name 1536 to_change.append(var.name) 1537 assert 'zero' not in to_change 1538 replace = lambda match_pattern: change[match_pattern.groups()[0]] 1539 1540 if not to_change: 1541 return 1542 1543 if 'parameter_dict' in self: 1544 new_dict = dict( (change[name] if (name in change) else name, value) for 1545 name, value in self['parameter_dict'].items()) 1546 self['parameter_dict'] = new_dict 1547 1548 if hasattr(self,'map_CTcoup_CTparam'): 1549 # If the map for the dependence of couplings to CTParameters has 1550 # been defined, we must apply the renaming there as well. 1551 self.map_CTcoup_CTparam = dict( (coup_name, 1552 [change[name] if (name in change) else name for name in params]) 1553 for coup_name, params in self.map_CTcoup_CTparam.items() ) 1554 1555 i=0 1556 while i*1000 <= len(to_change): 1557 one_change = to_change[i*1000: min((i+1)*1000,len(to_change))] 1558 i+=1 1559 rep_pattern = re.compile('\\b%s\\b'% (re_expr % ('\\b|\\b'.join(one_change)))) 1560 1561 # change parameters 1562 for key in keys: 1563 if key == ('external',): 1564 continue 1565 for param in self['parameters'][key]: 1566 param.expr = rep_pattern.sub(replace, param.expr) 1567 # change couplings 1568 for key in self['couplings'].keys(): 1569 for coup in self['couplings'][key]: 1570 coup.expr = rep_pattern.sub(replace, coup.expr) 1571 1572 # change form-factor 1573 ff = [l.formfactors for l in self['lorentz'] if hasattr(l, 'formfactors')] 1574 ff = set(sum(ff,[])) # here we have the list of ff used in the model 1575 for f in ff: 1576 f.value = rep_pattern.sub(replace, f.value) 1577 1578 # change mass/width 1579 for part in self['particles']: 1580 if str(part.get('mass')) in one_change: 1581 part.set('mass', rep_pattern.sub(replace, str(part.get('mass')))) 1582 if str(part.get('width')) in one_change: 1583 part.set('width', rep_pattern.sub(replace, str(part.get('width')))) 1584 if hasattr(part, 'partial_widths'): 1585 for key, value in part.partial_widths.items(): 1586 part.partial_widths[key] = rep_pattern.sub(replace, value) 1587 1588 #ensure that the particle_dict is up-to-date 1589 self['particle_dict'] ='' 1590 self.get('particle_dict')
1591 1592 1593
1594 - def get_first_non_pdg(self):
1595 """Return the first positive number that is not a valid PDG code""" 1596 return [c for c in range(1, len(self.get('particles')) + 1) if \ 1597 c not in self.get('particle_dict').keys()][0]
1598 1599
1600 - def write_param_card(self, filepath=None):
1601 """Write out the param_card, and return as string.""" 1602 1603 import models.write_param_card as writer 1604 if not filepath: 1605 out = StringIO.StringIO() # it's suppose to be written in a file 1606 else: 1607 out = filepath 1608 param = writer.ParamCardWriter(self, filepath=out) 1609 if not filepath: 1610 return out.getvalue() 1611 else: 1612 return param
1613 1614 @ staticmethod
1615 - def load_default_name():
1616 """ load the default for name convention """ 1617 1618 logger.info('Change particles name to pass to MG5 convention') 1619 default = {} 1620 for line in open(os.path.join(MG5DIR, 'input', \ 1621 'particles_name_default.txt')): 1622 line = line.lstrip() 1623 if line.startswith('#'): 1624 continue 1625 1626 args = line.split() 1627 if len(args) != 2: 1628 logger.warning('Invalid syntax in interface/default_name:\n %s' % line) 1629 continue 1630 default[int(args[0])] = args[1].lower() 1631 1632 return default
1633
1634 - def change_electroweak_mode(self, mode):
1635 """Change the electroweak mode. The only valid mode now is external. 1636 Where in top of the default MW and sw2 are external parameters.""" 1637 1638 assert mode in ["external",set(['mz','mw','alpha'])] 1639 1640 try: 1641 W = self.get('particle_dict')[24] 1642 except KeyError: 1643 raise InvalidCmd('No W particle in the model impossible to '+ 1644 'change the EW scheme!') 1645 1646 if mode=='external': 1647 MW = self.get_parameter(W.get('mass')) 1648 if not isinstance(MW, ParamCardVariable): 1649 newMW = ParamCardVariable(MW.name, MW.value, 'MASS', [24]) 1650 if not newMW.value: 1651 newMW.value = 80.385 1652 #remove the old definition 1653 self.get('parameters')[MW.depend].remove(MW) 1654 # add the new one 1655 self.add_param(newMW, ['external']) 1656 1657 # Now check for sw2. if not define bypass this 1658 try: 1659 sw2 = self.get_parameter('sw2') 1660 except KeyError: 1661 try: 1662 sw2 = self.get_parameter('mdl_sw2') 1663 except KeyError: 1664 sw2=None 1665 1666 if sw2: 1667 newsw2 = ParamCardVariable(sw2.name,sw2.value, 'SMINPUTS', [4]) 1668 if not newsw2.value: 1669 newsw2.value = 0.222246485786 1670 #remove the old definition 1671 self.get('parameters')[sw2.depend].remove(sw2) 1672 # add the new one 1673 self.add_param(newsw2, ['external']) 1674 # Force a refresh of the parameter dictionary 1675 self.parameters_dict = None 1676 return True 1677 1678 elif mode==set(['mz','mw','alpha']): 1679 # For now, all we support is to go from mz, Gf, alpha to mz, mw, alpha 1680 W = self.get('particle_dict')[24] 1681 mass = self.get_parameter(W.get('mass')) 1682 mass_expr = 'cmath.sqrt(%(prefix)sMZ__exp__2/2. + cmath.sqrt('+\ 1683 '%(prefix)sMZ__exp__4/4. - (%(prefix)saEW*cmath.pi*%(prefix)s'+\ 1684 'MZ__exp__2)/(%(prefix)sGf*%(prefix)ssqrt__2)))' 1685 if 'external' in mass.depend: 1686 # Nothing to be done 1687 return True 1688 match = False 1689 if mass.expr == mass_expr%{'prefix':''}: 1690 prefix = '' 1691 match = True 1692 elif mass.expr == mass_expr%{'prefix':'mdl_'}: 1693 prefix = 'mdl_' 1694 match = True 1695 if match: 1696 MW = ParamCardVariable(mass.name, mass.value, 'MASS', [24]) 1697 if not MW.value: 1698 MW.value = 80.385 1699 self.get('parameters')[('external',)].append(MW) 1700 self.get('parameters')[mass.depend].remove(mass) 1701 # Make Gf an internal parameter 1702 new_param = ModelVariable('Gf', 1703 '-%(prefix)saEW*%(prefix)sMZ**2*cmath.pi/(cmath.sqrt(2)*%(MW)s**2*(%(MW)s**2 - %(prefix)sMZ**2))' %\ 1704 {'MW': mass.name,'prefix':prefix}, 'complex', mass.depend) 1705 Gf = self.get_parameter('%sGf'%prefix) 1706 self.get('parameters')[('external',)].remove(Gf) 1707 self.add_param(new_param, ['%saEW'%prefix]) 1708 # Force a refresh of the parameter dictionary 1709 self.parameters_dict = None 1710 return True 1711 else: 1712 return False
1713
1714 - def change_mass_to_complex_scheme(self, toCMS=True):
1715 """modify the expression changing the mass to complex mass scheme""" 1716 1717 # 1) Change the 'CMSParam' of loop_qcd_qed model to 1.0 so as to remove 1718 # the 'real' prefix fromall UVCT wf renormalization expressions. 1719 # If toCMS is False, then it makes sure CMSParam is 0.0 and returns 1720 # immediatly. 1721 # 2) Find All input parameter mass and width associated 1722 # Add a internal parameter and replace mass with that param 1723 # 3) Find All mass fixed by the model and width associated 1724 # -> Both need to be fixed with a real() /Imag() 1725 # 4) Find All width set by the model 1726 # -> Need to be set with a real() 1727 # 5) Fix the Yukawa mass to the value of the complex mass/ real mass 1728 # 6) Loop through all expression and modify those accordingly 1729 # Including all parameter expression as complex 1730 1731 try: 1732 CMSParam = self.get_parameter('CMSParam') 1733 except KeyError: 1734 try: 1735 CMSParam = self.get_parameter('mdl_CMSParam') 1736 except KeyError: 1737 CMSParam = None 1738 1739 # Handle the case where we want to make sure the CMS is turned off 1740 if not toCMS: 1741 if CMSParam: 1742 CMSParam.expr = '0.0' 1743 return 1744 1745 # Now handle the case where we want to turn to CMS. 1746 if CMSParam: 1747 CMSParam.expr = '1.0' 1748 1749 to_change = {} 1750 mass_widths = [] # parameter which should stay real 1751 for particle in self.get('particles'): 1752 m = particle.get('width') 1753 if m in mass_widths: 1754 continue 1755 mass_widths.append(particle.get('width')) 1756 mass_widths.append(particle.get('mass')) 1757 width = self.get_parameter(particle.get('width')) 1758 if (isinstance(width.value, (complex,float)) and abs(width.value)==0.0) or \ 1759 width.name.lower() =='zero': 1760 #everything is fine since the width is zero 1761 continue 1762 if not isinstance(width, ParamCardVariable): 1763 width.expr = 're(%s)' % width.expr 1764 mass = self.get_parameter(particle.get('mass')) 1765 if (isinstance(width.value, (complex,float)) and abs(width.value)!=0.0) or \ 1766 mass.name.lower() != 'zero': 1767 # special SM treatment to change the gauge scheme automatically. 1768 if particle.get('pdg_code') == 24 and isinstance(mass, 1769 ModelVariable): 1770 status = self.change_electroweak_mode( 1771 set(['mz','mw','alpha'])) 1772 # Use the newly defined parameter for the W mass 1773 mass = self.get_parameter(particle.get('mass')) 1774 if not status: 1775 logger.warning('The W mass is not an external '+ 1776 'parameter in this model and the automatic change of'+ 1777 ' electroweak scheme changed. This is not advised for '+ 1778 'applying the complex mass scheme.') 1779 1780 # Add A new parameter CMASS 1781 #first compute the dependencies (as,...) 1782 depend = list(set(mass.depend + width.depend)) 1783 if len(depend)>1 and 'external' in depend: 1784 depend.remove('external') 1785 depend = tuple(depend) 1786 if depend == ('external',): 1787 depend = () 1788 1789 # Create the new parameter 1790 if isinstance(mass, ParamCardVariable): 1791 New_param = ModelVariable('CMASS_'+mass.name, 1792 'cmath.sqrt(%(mass)s**2 - complex(0,1) * %(mass)s * %(width)s)' \ 1793 % {'mass': mass.name, 'width': width.name}, 1794 'complex', depend) 1795 else: 1796 New_param = ModelVariable('CMASS_'+mass.name, 1797 mass.expr, 'complex', depend) 1798 # Modify the treatment of the width in this case 1799 if not isinstance(width, ParamCardVariable): 1800 width.expr = '- im(%s**2) / cmath.sqrt(re(%s**2))' % (mass.expr, mass.expr) 1801 else: 1802 # Remove external parameter from the param_card 1803 New_width = ModelVariable(width.name, 1804 '-1 * im(CMASS_%s**2) / %s' % (mass.name, mass.name), 'real', mass.depend) 1805 self.get('parameters')[('external',)].remove(width) 1806 self.add_param(New_param, (mass,)) 1807 self.add_param(New_width, (New_param,)) 1808 mass.expr = 'cmath.sqrt(re(%s**2))' % mass.expr 1809 to_change[mass.name] = New_param.name 1810 continue 1811 1812 mass.expr = 're(%s)' % mass.expr 1813 self.add_param(New_param, (mass, width)) 1814 to_change[mass.name] = New_param.name 1815 1816 # Remove the Yukawa and fix those accordingly to the mass/complex mass 1817 yukawas = [p for p in self.get('parameters')[('external',)] 1818 if p.lhablock.lower() == 'yukawa'] 1819 for yukawa in yukawas: 1820 # clean the pevious parameter 1821 self.get('parameters')[('external',)].remove(yukawa) 1822 1823 particle = self.get_particle(yukawa.lhacode[0]) 1824 mass = self.get_parameter(particle.get('mass')) 1825 1826 # add the new parameter in the correct category 1827 if mass.depend == ('external',): 1828 depend = () 1829 else: 1830 depend = mass.depend 1831 1832 New_param = ModelVariable(yukawa.name, mass.name, 'real', depend) 1833 1834 # Add it in the model at the correct place (for the dependences) 1835 if mass.name in to_change: 1836 expr = 'CMASS_%s' % mass.name 1837 else: 1838 expr = mass.name 1839 param_depend = self.get_parameter(expr) 1840 self.add_param(New_param, [param_depend]) 1841 1842 if not to_change: 1843 return 1844 1845 1846 # So at this stage we still need to modify all parameters depending of 1847 # particle's mass. In addition all parameter (but mass/width/external 1848 # parameter) should be pass in complex mode. 1849 pat = '|'.join(to_change.keys()) 1850 pat = r'(%s)\b' % pat 1851 pat = re.compile(pat) 1852 def replace(match): 1853 return to_change[match.group()]
1854 1855 # Modify the parameters 1856 for dep, list_param in self['parameters'].items(): 1857 for param in list_param: 1858 if param.name.startswith('CMASS_') or param.name in mass_widths or\ 1859 isinstance(param, ParamCardVariable): 1860 continue 1861 param.type = 'complex' 1862 # print param.expr, to_change 1863 1864 param.expr = pat.sub(replace, param.expr) 1865 1866 # Modify the couplings 1867 for dep, list_coup in self['couplings'].items(): 1868 for coup in list_coup: 1869 coup.expr = pat.sub(replace, coup.expr) 1870
1871 - def add_param(self, new_param, depend_param):
1872 """add the parameter in the list of parameter in a correct position""" 1873 1874 pos = 0 1875 for i,param in enumerate(self.get('parameters')[new_param.depend]): 1876 if param.name in depend_param: 1877 pos = i + 1 1878 self.get('parameters')[new_param.depend].insert(pos, new_param)
1879
1880 1881 #def __repr__(self): 1882 # """ """ 1883 # raise Exception 1884 # return "Model(%s)" % self.get_name() 1885 #__str__ = __repr__ 1886 ################################################################################ 1887 # Class for Parameter / Coupling 1888 ################################################################################ 1889 -class ModelVariable(object):
1890 """A Class for storing the information about coupling/ parameter""" 1891
1892 - def __init__(self, name, expression, type, depend=()):
1893 """Initialize a new parameter/coupling""" 1894 1895 self.name = name 1896 self.expr = expression # python expression 1897 self.type = type # real/complex 1898 self.depend = depend # depend on some other parameter -tuple- 1899 self.value = None
1900
1901 - def __eq__(self, other):
1902 """Object with same name are identical, If the object is a string we check 1903 if the attribute name is equal to this string""" 1904 1905 try: 1906 return other.name == self.name 1907 except Exception: 1908 return other == self.name
1909
1910 -class ParamCardVariable(ModelVariable):
1911 """ A class for storing the information linked to all the parameter 1912 which should be define in the param_card.dat""" 1913 1914 depend = ('external',) 1915 type = 'real' 1916
1917 - def __init__(self, name, value, lhablock, lhacode):
1918 """Initialize a new ParamCardVariable 1919 name: name of the variable 1920 value: default numerical value 1921 lhablock: name of the block in the param_card.dat 1922 lhacode: code associate to the variable 1923 """ 1924 self.name = name 1925 self.value = value 1926 self.lhablock = lhablock 1927 self.lhacode = lhacode
1928
1929 1930 #=============================================================================== 1931 # Classes used in diagram generation and process definition: 1932 # Leg, Vertex, Diagram, Process 1933 #=============================================================================== 1934 1935 #=============================================================================== 1936 # Leg 1937 #=============================================================================== 1938 -class Leg(PhysicsObject):
1939 """Leg object: id (Particle), number, I/F state, flag from_group 1940 """ 1941
1942 - def default_setup(self):
1943 """Default values for all properties""" 1944 1945 self['id'] = 0 1946 self['number'] = 0 1947 # state: True = final, False = initial (boolean to save memory) 1948 self['state'] = True 1949 #self['loop_line'] = False 1950 self['loop_line'] = False 1951 # from_group: Used in diagram generation 1952 self['from_group'] = True 1953 # onshell: decaying leg (True), forbidden s-channel (False), none (None) 1954 self['onshell'] = None
1955
1956 - def filter(self, name, value):
1957 """Filter for valid leg property values.""" 1958 1959 if name in ['id', 'number']: 1960 if not isinstance(value, int): 1961 raise self.PhysicsObjectError, \ 1962 "%s is not a valid integer for leg id" % str(value) 1963 1964 if name == 'state': 1965 if not isinstance(value, bool): 1966 raise self.PhysicsObjectError, \ 1967 "%s is not a valid leg state (True|False)" % \ 1968 str(value) 1969 1970 if name == 'from_group': 1971 if not isinstance(value, bool) and value != None: 1972 raise self.PhysicsObjectError, \ 1973 "%s is not a valid boolean for leg flag from_group" % \ 1974 str(value) 1975 1976 if name == 'loop_line': 1977 if not isinstance(value, bool) and value != None: 1978 raise self.PhysicsObjectError, \ 1979 "%s is not a valid boolean for leg flag loop_line" % \ 1980 str(value) 1981 1982 if name == 'onshell': 1983 if not isinstance(value, bool) and value != None: 1984 raise self.PhysicsObjectError, \ 1985 "%s is not a valid boolean for leg flag onshell" % \ 1986 str(value) 1987 return True
1988
1989 - def get_sorted_keys(self):
1990 """Return particle property names as a nicely sorted list.""" 1991 1992 return ['id', 'number', 'state', 'from_group', 'loop_line', 'onshell']
1993
1994 - def is_fermion(self, model):
1995 """Returns True if the particle corresponding to the leg is a 1996 fermion""" 1997 1998 assert isinstance(model, Model), "%s is not a model" % str(model) 1999 2000 return model.get('particle_dict')[self['id']].is_fermion()
2001
2002 - def is_incoming_fermion(self, model):
2003 """Returns True if leg is an incoming fermion, i.e., initial 2004 particle or final antiparticle""" 2005 2006 assert isinstance(model, Model), "%s is not a model" % str(model) 2007 2008 part = model.get('particle_dict')[self['id']] 2009 return part.is_fermion() and \ 2010 (self.get('state') == False and part.get('is_part') or \ 2011 self.get('state') == True and not part.get('is_part'))
2012
2013 - def is_outgoing_fermion(self, model):
2014 """Returns True if leg is an outgoing fermion, i.e., initial 2015 antiparticle or final particle""" 2016 2017 assert isinstance(model, Model), "%s is not a model" % str(model) 2018 2019 part = model.get('particle_dict')[self['id']] 2020 return part.is_fermion() and \ 2021 (self.get('state') == True and part.get('is_part') or \ 2022 self.get('state') == False and not part.get('is_part'))
2023 2024 # Helper function. We don't overload the == operator because it might be useful 2025 # to define it differently than that later. 2026
2027 - def same(self, leg):
2028 """ Returns true if the leg in argument has the same ID and the same numer """ 2029 2030 # In case we want to check this leg with an integer in the tagging procedure, 2031 # then it only has to match the leg number. 2032 if isinstance(leg,int): 2033 if self['number']==leg: 2034 return True 2035 else: 2036 return False 2037 2038 # If using a Leg object instead, we also want to compare the other relevant 2039 # properties. 2040 elif isinstance(leg, Leg): 2041 if self['id']==leg.get('id') and \ 2042 self['number']==leg.get('number') and \ 2043 self['loop_line']==leg.get('loop_line') : 2044 return True 2045 else: 2046 return False 2047 2048 else : 2049 return False
2050 2051 # Make sure sort() sorts lists of legs according to 'number'
2052 - def __lt__(self, other):
2053 return self['number'] < other['number']
2054
2055 #=============================================================================== 2056 # LegList 2057 #=============================================================================== 2058 -class LegList(PhysicsObjectList):
2059 """List of Leg objects 2060 """ 2061
2062 - def is_valid_element(self, obj):
2063 """Test if object obj is a valid Leg for the list.""" 2064 2065 return isinstance(obj, Leg)
2066 2067 # Helper methods for diagram generation 2068
2069 - def from_group_elements(self):
2070 """Return all elements which have 'from_group' True""" 2071 2072 return filter(lambda leg: leg.get('from_group'), self)
2073
2074 - def minimum_one_from_group(self):
2075 """Return True if at least one element has 'from_group' True""" 2076 2077 return len(self.from_group_elements()) > 0
2078
2079 - def minimum_two_from_group(self):
2080 """Return True if at least two elements have 'from_group' True""" 2081 2082 return len(self.from_group_elements()) > 1
2083
2084 - def can_combine_to_1(self, ref_dict_to1):
2085 """If has at least one 'from_group' True and in ref_dict_to1, 2086 return the return list from ref_dict_to1, otherwise return False""" 2087 if self.minimum_one_from_group(): 2088 return ref_dict_to1.has_key(tuple(sorted([leg.get('id') for leg in self]))) 2089 else: 2090 return False
2091
2092 - def can_combine_to_0(self, ref_dict_to0, is_decay_chain=False):
2093 """If has at least two 'from_group' True and in ref_dict_to0, 2094 2095 return the vertex (with id from ref_dict_to0), otherwise return None 2096 2097 If is_decay_chain = True, we only allow clustering of the 2098 initial leg, since we want this to be the last wavefunction to 2099 be evaluated. 2100 """ 2101 if is_decay_chain: 2102 # Special treatment - here we only allow combination to 0 2103 # if the initial leg (marked by from_group = None) is 2104 # unclustered, since we want this to stay until the very 2105 # end. 2106 return any(leg.get('from_group') == None for leg in self) and \ 2107 ref_dict_to0.has_key(tuple(sorted([leg.get('id') \ 2108 for leg in self]))) 2109 2110 if self.minimum_two_from_group(): 2111 return ref_dict_to0.has_key(tuple(sorted([leg.get('id') for leg in self]))) 2112 else: 2113 return False
2114
2115 - def get_outgoing_id_list(self, model):
2116 """Returns the list of ids corresponding to the leglist with 2117 all particles outgoing""" 2118 2119 res = [] 2120 2121 assert isinstance(model, Model), "Error! model not model" 2122 2123 2124 for leg in self: 2125 if leg.get('state') == False: 2126 res.append(model.get('particle_dict')[leg.get('id')].get_anti_pdg_code()) 2127 else: 2128 res.append(leg.get('id')) 2129 2130 return res
2131
2132 - def sort(self,*args, **opts):
2133 """Match with FKSLegList""" 2134 Opts=copy.copy(opts) 2135 if 'pert' in Opts.keys(): 2136 del Opts['pert'] 2137 return super(LegList,self).sort(*args, **Opts)
2138
2139 2140 #=============================================================================== 2141 # MultiLeg 2142 #=============================================================================== 2143 -class MultiLeg(PhysicsObject):
2144 """MultiLeg object: ids (Particle or particles), I/F state 2145 """ 2146
2147 - def default_setup(self):
2148 """Default values for all properties""" 2149 2150 self['ids'] = [] 2151 self['state'] = True
2152
2153 - def filter(self, name, value):
2154 """Filter for valid multileg property values.""" 2155 2156 if name == 'ids': 2157 if not isinstance(value, list): 2158 raise self.PhysicsObjectError, \ 2159 "%s is not a valid list" % str(value) 2160 for i in value: 2161 if not isinstance(i, int): 2162 raise self.PhysicsObjectError, \ 2163 "%s is not a valid list of integers" % str(value) 2164 2165 if name == 'state': 2166 if not isinstance(value, bool): 2167 raise self.PhysicsObjectError, \ 2168 "%s is not a valid leg state (initial|final)" % \ 2169 str(value) 2170 2171 return True
2172
2173 - def get_sorted_keys(self):
2174 """Return particle property names as a nicely sorted list.""" 2175 2176 return ['ids', 'state']
2177
2178 #=============================================================================== 2179 # LegList 2180 #=============================================================================== 2181 -class MultiLegList(PhysicsObjectList):
2182 """List of MultiLeg objects 2183 """ 2184
2185 - def is_valid_element(self, obj):
2186 """Test if object obj is a valid MultiLeg for the list.""" 2187 2188 return isinstance(obj, MultiLeg)
2189
2190 #=============================================================================== 2191 # Vertex 2192 #=============================================================================== 2193 -class Vertex(PhysicsObject):
2194 """Vertex: list of legs (ordered), id (Interaction) 2195 """ 2196 2197 sorted_keys = ['id', 'legs'] 2198 2199 # This sets what are the ID's of the vertices that must be ignored for the 2200 # purpose of the multi-channeling. 0 and -1 are ID's of various technical 2201 # vertices which have no relevance from the perspective of the diagram 2202 # topology, while -2 is the ID of a vertex that results from a shrunk loop 2203 # (for loop-induced integration with MadEvent) and one may or may not want 2204 # to consider these higher point loops for the purpose of the multi-channeling. 2205 # So, adding -2 to the list below makes sur that all loops are considered 2206 # for multichanneling. 2207 ID_to_veto_for_multichanneling = [0,-1,-2] 2208 2209 # For loop-induced integration, considering channels from up to box loops 2210 # typically leads to better efficiencies. Beyond that, it is detrimental 2211 # because the phase-space generation is not suited to map contact interactions 2212 # This parameter controls up to how many legs should loop-induced diagrams 2213 # be considered for multichanneling. 2214 # Notice that, in the grouped subprocess case mode, if -2 is not added to 2215 # the list ID_to_veto_for_multichanneling then all loop are considered by 2216 # default and the constraint below is not applied. 2217 max_n_loop_for_multichanneling = 4 2218
2219 - def default_setup(self):
2220 """Default values for all properties""" 2221 2222 # The 'id' of the vertex corresponds to the interaction ID it is made of. 2223 # Notice that this 'id' can take the special values : 2224 # -1 : A two-point vertex which either 'sews' the two L-cut particles 2225 # together or simply merges two wavefunctions to create an amplitude 2226 # (in the case of tree-level diagrams). 2227 # -2 : The id given to the ContractedVertices (i.e. a shrunk loop) so 2228 # that it can be easily identified when constructing the DiagramChainLinks. 2229 self['id'] = 0 2230 self['legs'] = LegList()
2231
2232 - def filter(self, name, value):
2233 """Filter for valid vertex property values.""" 2234 2235 if name == 'id': 2236 if not isinstance(value, int): 2237 raise self.PhysicsObjectError, \ 2238 "%s is not a valid integer for vertex id" % str(value) 2239 2240 if name == 'legs': 2241 if not isinstance(value, LegList): 2242 raise self.PhysicsObjectError, \ 2243 "%s is not a valid LegList object" % str(value) 2244 2245 return True
2246
2247 - def get_sorted_keys(self):
2248 """Return particle property names as a nicely sorted list.""" 2249 2250 return self.sorted_keys #['id', 'legs']
2251
2252 - def nice_string(self):
2253 """return a nice string""" 2254 2255 mystr = [] 2256 for leg in self['legs']: 2257 mystr.append( str(leg['number']) + '(%s)' % str(leg['id'])) 2258 mystr = '(%s,id=%s ,obj_id:%s)' % (', '.join(mystr), self['id'], id(self)) 2259 2260 return(mystr)
2261 2262
2263 - def get_s_channel_id(self, model, ninitial):
2264 """Returns the id for the last leg as an outgoing 2265 s-channel. Returns 0 if leg is t-channel, or if identity 2266 vertex. Used to check for required and forbidden s-channel 2267 particles.""" 2268 2269 leg = self.get('legs')[-1] 2270 2271 if ninitial == 1: 2272 # For one initial particle, all legs are s-channel 2273 # Only need to flip particle id if state is False 2274 if leg.get('state') == True: 2275 return leg.get('id') 2276 else: 2277 return model.get('particle_dict')[leg.get('id')].\ 2278 get_anti_pdg_code() 2279 2280 # Number of initial particles is at least 2 2281 if self.get('id') == 0 or \ 2282 leg.get('state') == False: 2283 # identity vertex or t-channel particle 2284 return 0 2285 2286 if leg.get('loop_line'): 2287 # Loop lines never count as s-channel 2288 return 0 2289 2290 # Check if the particle number is <= ninitial 2291 # In that case it comes from initial and we should switch direction 2292 if leg.get('number') > ninitial: 2293 return leg.get('id') 2294 else: 2295 return model.get('particle_dict')[leg.get('id')].\ 2296 get_anti_pdg_code()
2297
2298 ## Check if the other legs are initial or final. 2299 ## If the latter, return leg id, if the former, return -leg id 2300 #if self.get('legs')[0].get('state') == True: 2301 # return leg.get('id') 2302 #else: 2303 # return model.get('particle_dict')[leg.get('id')].\ 2304 # get_anti_pdg_code() 2305 2306 #=============================================================================== 2307 # VertexList 2308 #=============================================================================== 2309 -class VertexList(PhysicsObjectList):
2310 """List of Vertex objects 2311 """ 2312 2313 orders = {} 2314
2315 - def is_valid_element(self, obj):
2316 """Test if object obj is a valid Vertex for the list.""" 2317 2318 return isinstance(obj, Vertex)
2319
2320 - def __init__(self, init_list=None, orders=None):
2321 """Creates a new list object, with an optional dictionary of 2322 coupling orders.""" 2323 2324 list.__init__(self) 2325 2326 if init_list is not None: 2327 for object in init_list: 2328 self.append(object) 2329 2330 if isinstance(orders, dict): 2331 self.orders = orders
2332
2333 #=============================================================================== 2334 # ContractedVertex 2335 #=============================================================================== 2336 -class ContractedVertex(Vertex):
2337 """ContractedVertex: When contracting a loop to a given vertex, the created 2338 vertex object is then a ContractedVertex object which has additional 2339 information with respect to a regular vertex object. For example, it contains 2340 the PDG of the particles attached to it. (necessary because the contracted 2341 vertex doesn't have an interaction ID which would allow to retrieve such 2342 information). 2343 """ 2344
2345 - def default_setup(self):
2346 """Default values for all properties""" 2347 2348 self['PDGs'] = [] 2349 self['loop_tag'] = tuple() 2350 self['loop_orders'] = {} 2351 super(ContractedVertex, self).default_setup()
2352
2353 - def filter(self, name, value):
2354 """Filter for valid vertex property values.""" 2355 2356 if name == 'PDGs': 2357 if isinstance(value, list): 2358 for elem in value: 2359 if not isinstance(elem,int): 2360 raise self.PhysicsObjectError, \ 2361 "%s is not a valid integer for leg PDG" % str(elem) 2362 else: 2363 raise self.PhysicsObjectError, \ 2364 "%s is not a valid list for contracted vertex PDGs"%str(value) 2365 if name == 'loop_tag': 2366 if isinstance(value, tuple): 2367 for elem in value: 2368 if not (isinstance(elem,int) or isinstance(elem,tuple)): 2369 raise self.PhysicsObjectError, \ 2370 "%s is not a valid int or tuple for loop tag element"%str(elem) 2371 else: 2372 raise self.PhysicsObjectError, \ 2373 "%s is not a valid tuple for a contracted vertex loop_tag."%str(value) 2374 if name == 'loop_orders': 2375 Interaction.filter(Interaction(), 'orders', value) 2376 else: 2377 return super(ContractedVertex, self).filter(name, value) 2378 2379 return True
2380
2381 - def get_sorted_keys(self):
2382 """Return particle property names as a nicely sorted list.""" 2383 2384 return super(ContractedVertex, self).get_sorted_keys()+['PDGs']
2385
2386 #=============================================================================== 2387 # Diagram 2388 #=============================================================================== 2389 -class Diagram(PhysicsObject):
2390 """Diagram: list of vertices (ordered) 2391 """ 2392
2393 - def default_setup(self):
2394 """Default values for all properties""" 2395 2396 self['vertices'] = VertexList() 2397 self['orders'] = {}
2398
2399 - def filter(self, name, value):
2400 """Filter for valid diagram property values.""" 2401 2402 if name == 'vertices': 2403 if not isinstance(value, VertexList): 2404 raise self.PhysicsObjectError, \ 2405 "%s is not a valid VertexList object" % str(value) 2406 2407 if name == 'orders': 2408 Interaction.filter(Interaction(), 'orders', value) 2409 2410 return True
2411
2412 - def get_sorted_keys(self):
2413 """Return particle property names as a nicely sorted list.""" 2414 2415 return ['vertices', 'orders']
2416
2417 - def nice_string(self):
2418 """Returns a nicely formatted string of the diagram content.""" 2419 2420 pass_sanity = True 2421 if self['vertices']: 2422 mystr = '(' 2423 for vert in self['vertices']: 2424 used_leg = [] 2425 mystr = mystr + '(' 2426 for leg in vert['legs'][:-1]: 2427 mystr = mystr + str(leg['number']) + '(%s)' % str(leg['id']) + ',' 2428 used_leg.append(leg['number']) 2429 if __debug__ and len(used_leg) != len(set(used_leg)): 2430 pass_sanity = False 2431 responsible = id(vert) 2432 2433 if self['vertices'].index(vert) < len(self['vertices']) - 1: 2434 # Do not want ">" in the last vertex 2435 mystr = mystr[:-1] + '>' 2436 mystr = mystr + str(vert['legs'][-1]['number']) + '(%s)' % str(vert['legs'][-1]['id']) + ',' 2437 mystr = mystr + 'id:' + str(vert['id']) + '),' 2438 2439 mystr = mystr[:-1] + ')' 2440 mystr += " (%s)" % (",".join(["%s=%d" % (key, self['orders'][key]) \ 2441 for key in sorted(self['orders'].keys())])) 2442 2443 if not pass_sanity: 2444 raise Exception, "invalid diagram: %s. vert_id: %s" % (mystr, responsible) 2445 2446 return mystr 2447 else: 2448 return '()'
2449
2450 - def calculate_orders(self, model):
2451 """Calculate the actual coupling orders of this diagram. Note 2452 that the special order WEIGTHED corresponds to the sum of 2453 hierarchys for the couplings.""" 2454 2455 coupling_orders = dict([(c, 0) for c in model.get('coupling_orders')]) 2456 weight = 0 2457 for vertex in self['vertices']: 2458 if vertex.get('id') in [0,-1]: continue 2459 if vertex.get('id') == -2: 2460 couplings = vertex.get('loop_orders') 2461 else: 2462 couplings = model.get('interaction_dict')[vertex.get('id')].\ 2463 get('orders') 2464 for coupling in couplings: 2465 coupling_orders[coupling] += couplings[coupling] 2466 weight += sum([model.get('order_hierarchy')[c]*n for \ 2467 (c,n) in couplings.items()]) 2468 coupling_orders['WEIGHTED'] = weight 2469 self.set('orders', coupling_orders)
2470
2471 - def pass_squared_order_constraints(self, diag_multiplier, squared_orders, 2472 sq_orders_types):
2473 """ Returns wether the contributiong consisting in the current diagram 2474 multiplied by diag_multiplier passes the *positive* squared_orders 2475 specified ( a dictionary ) of types sq_order_types (a dictionary whose 2476 values are the relational operator used to define the constraint of the 2477 order in key).""" 2478 2479 for order, value in squared_orders.items(): 2480 if value<0: 2481 continue 2482 combined_order = self.get_order(order) + \ 2483 diag_multiplier.get_order(order) 2484 if ( sq_orders_types[order]=='==' and combined_order != value ) or \ 2485 ( sq_orders_types[order] in ['=', '<='] and combined_order > value) or \ 2486 ( sq_orders_types[order]=='>' and combined_order <= value) : 2487 return False 2488 return True
2489
2490 - def get_order(self, order):
2491 """Return the order of this diagram. It returns 0 if it is not present.""" 2492 2493 try: 2494 return self['orders'][order] 2495 except Exception: 2496 return 0
2497
2498 - def get_contracted_loop_diagram(self, struct_rep=None):
2499 """ Returns a Diagram which correspond to the loop diagram with the 2500 loop shrunk to a point. Of course for a instance of base_objects.Diagram 2501 one must simply return self.""" 2502 2503 return self
2504
2505 - def get_external_legs(self):
2506 """ Return the list of external legs of this diagram """ 2507 2508 external_legs = LegList([]) 2509 for leg in sum([vert.get('legs') for vert in self.get('vertices')],[]): 2510 if not leg.get('number') in [l.get('number') for l in external_legs]: 2511 external_legs.append(leg) 2512 2513 return external_legs
2514
2515 - def renumber_legs(self, perm_map, leg_list):
2516 """Renumber legs in all vertices according to perm_map""" 2517 2518 vertices = VertexList() 2519 min_dict = copy.copy(perm_map) 2520 # Dictionary from leg number to state 2521 state_dict = dict([(l.get('number'), l.get('state')) for l in leg_list]) 2522 # First renumber all legs in the n-1->1 vertices 2523 for vertex in self.get('vertices')[:-1]: 2524 vertex = copy.copy(vertex) 2525 leg_list = LegList([copy.copy(l) for l in vertex.get('legs')]) 2526 for leg in leg_list[:-1]: 2527 leg.set('number', min_dict[leg.get('number')]) 2528 leg.set('state', state_dict[leg.get('number')]) 2529 min_number = min([leg.get('number') for leg in leg_list[:-1]]) 2530 leg = leg_list[-1] 2531 min_dict[leg.get('number')] = min_number 2532 # resulting leg is initial state if there is exactly one 2533 # initial state leg among the incoming legs 2534 state_dict[min_number] = len([l for l in leg_list[:-1] if \ 2535 not l.get('state')]) != 1 2536 leg.set('number', min_number) 2537 leg.set('state', state_dict[min_number]) 2538 vertex.set('legs', leg_list) 2539 vertices.append(vertex) 2540 # Now renumber the legs in final vertex 2541 vertex = copy.copy(self.get('vertices')[-1]) 2542 leg_list = LegList([copy.copy(l) for l in vertex.get('legs')]) 2543 for leg in leg_list: 2544 leg.set('number', min_dict[leg.get('number')]) 2545 leg.set('state', state_dict[leg.get('number')]) 2546 vertex.set('legs', leg_list) 2547 vertices.append(vertex) 2548 # Finally create new diagram 2549 new_diag = copy.copy(self) 2550 new_diag.set('vertices', vertices) 2551 state_dict = {True:'T',False:'F'} 2552 return new_diag
2553
2554 - def get_vertex_leg_numbers(self, 2555 veto_inter_id=Vertex.ID_to_veto_for_multichanneling, 2556 max_n_loop=0):
2557 """Return a list of the number of legs in the vertices for 2558 this diagram. 2559 This function is only used for establishing the multi-channeling, so that 2560 we exclude from it all the fake vertices and the vertices resulting from 2561 shrunk loops (id=-2)""" 2562 2563 2564 if max_n_loop == 0: 2565 max_n_loop = Vertex.max_n_loop_for_multichanneling 2566 2567 res = [len(v.get('legs')) for v in self.get('vertices') if (v.get('id') \ 2568 not in veto_inter_id) or (v.get('id')==-2 and 2569 len(v.get('legs'))>max_n_loop)] 2570 2571 return res
2572
2573 - def get_num_configs(self, model, ninitial):
2574 """Return the maximum number of configs from this diagram, 2575 given by 2^(number of non-zero width s-channel propagators)""" 2576 2577 s_channels = [v.get_s_channel_id(model,ninitial) for v in \ 2578 self.get('vertices')[:-1]] 2579 num_props = len([i for i in s_channels if i != 0 and \ 2580 model.get_particle(i).get('width').lower() != 'zero']) 2581 2582 if num_props < 1: 2583 return 1 2584 else: 2585 return 2**num_props
2586
2587 - def get_flow_charge_diff(self, model):
2588 """return the difference of total diff of charge occuring on the 2589 lofw of the initial parton. return [None,None] if the two initial parton 2590 are connected and the (partial) value if None if the initial parton is 2591 not a fermiom""" 2592 2593 import madgraph.core.drawing as drawing 2594 drawdiag = drawing.FeynmanDiagram(self, model) 2595 drawdiag.load_diagram() 2596 out = [] 2597 2598 for v in drawdiag.initial_vertex: 2599 init_part = v.lines[0] 2600 if not init_part.is_fermion(): 2601 out.append(None) 2602 continue 2603 2604 init_charge = model.get_particle(init_part.id).get('charge') 2605 2606 l_last = init_part 2607 v_last = v 2608 vcurrent = l_last.end 2609 if vcurrent == v: 2610 vcurrent = l_last.begin 2611 security =0 2612 while not vcurrent.is_external(): 2613 if security > 1000: 2614 raise Exception, 'wrong diagram' 2615 next_l = [l for l in vcurrent.lines if l is not l_last and l.is_fermion()][0] 2616 next_v = next_l.end 2617 if next_v == vcurrent: 2618 next_v = next_l.begin 2619 l_last, vcurrent = next_l, next_v 2620 if vcurrent in drawdiag.initial_vertex: 2621 return [None, None] 2622 2623 out.append(model.get_particle(l_last.id).get('charge') - init_charge) 2624 return out
2625
2626 2627 #=============================================================================== 2628 # DiagramList 2629 #=============================================================================== 2630 -class DiagramList(PhysicsObjectList):
2631 """List of Diagram objects 2632 """ 2633
2634 - def is_valid_element(self, obj):
2635 """Test if object obj is a valid Diagram for the list.""" 2636 2637 return isinstance(obj, Diagram)
2638
2639 - def nice_string(self, indent=0):
2640 """Returns a nicely formatted string""" 2641 mystr = " " * indent + str(len(self)) + ' diagrams:\n' 2642 for i, diag in enumerate(self): 2643 mystr = mystr + " " * indent + str(i+1) + " " + \ 2644 diag.nice_string() + '\n' 2645 return mystr[:-1]
2646 2647 # Helper function 2648
2649 - def get_max_order(self,order):
2650 """ Return the order of the diagram in the list with the maximum coupling 2651 order for the coupling specified """ 2652 max_order=-1 2653 2654 for diag in self: 2655 if order in diag['orders'].keys(): 2656 if max_order==-1 or diag['orders'][order] > max_order: 2657 max_order = diag['orders'][order] 2658 2659 return max_order
2660
2661 - def apply_negative_sq_order(self, ref_diag_list, order, value, order_type):
2662 """ This function returns a fitlered version of the diagram list self 2663 which satisfy the negative squared_order constraint 'order' with negative 2664 value 'value' and of type 'order_type', assuming that the diagram_list 2665 it must be squared against is 'reg_diag_list'. It also returns the 2666 new postive target squared order which correspond to this negative order 2667 constraint. Example: u u~ > d d~ QED^2<=-2 means that one wants to 2668 pick terms only up to the the next-to-leading order contributiong in QED, 2669 which is QED=2 in this case, so that target_order=4 is returned.""" 2670 2671 # First we must compute all contributions to that order 2672 target_order = min(ref_diag_list.get_order_values(order))+\ 2673 min(self.get_order_values(order))+2*(-value-1) 2674 2675 new_list = self.apply_positive_sq_orders(ref_diag_list, 2676 {order:target_order}, {order:order_type}) 2677 2678 return new_list, target_order
2679
2680 - def apply_positive_sq_orders(self, ref_diag_list, sq_orders, sq_order_types):
2681 """ This function returns a filtered version of self which contain 2682 only the diagram which satisfy the positive squared order constraints 2683 sq_orders of type sq_order_types and assuming that the diagrams are 2684 multiplied with those of the reference diagram list ref_diag_list.""" 2685 2686 new_diag_list = DiagramList() 2687 for tested_diag in self: 2688 for ref_diag in ref_diag_list: 2689 if tested_diag.pass_squared_order_constraints(ref_diag, 2690 sq_orders,sq_order_types): 2691 new_diag_list.append(tested_diag) 2692 break 2693 return new_diag_list
2694
2695 - def filter_constrained_orders(self, order, value, operator):
2696 """ This function modifies the current object and remove the diagram 2697 which do not obey the condition """ 2698 2699 new = [] 2700 for tested_diag in self: 2701 if operator == '==': 2702 if tested_diag['orders'][order] == value: 2703 new.append(tested_diag) 2704 elif operator == '>': 2705 if tested_diag['orders'][order] > value: 2706 new.append(tested_diag) 2707 self[:] = new 2708 return self
2709 2710
2711 - def get_min_order(self,order):
2712 """ Return the order of the diagram in the list with the mimimum coupling 2713 order for the coupling specified """ 2714 min_order=-1 2715 for diag in self: 2716 if order in diag['orders'].keys(): 2717 if min_order==-1 or diag['orders'][order] < min_order: 2718 min_order = diag['orders'][order] 2719 else: 2720 return 0 2721 2722 return min_order
2723
2724 - def get_order_values(self, order):
2725 """ Return the list of possible values appearing in the diagrams of this 2726 list for the order given in argument """ 2727 2728 values=set([]) 2729 for diag in self: 2730 if order in diag['orders'].keys(): 2731 values.add(diag['orders'][order]) 2732 else: 2733 values.add(0) 2734 2735 return list(values)
2736
2737 #=============================================================================== 2738 # Process 2739 #=============================================================================== 2740 -class Process(PhysicsObject):
2741 """Process: list of legs (ordered) 2742 dictionary of orders 2743 model 2744 process id 2745 """ 2746
2747 - def default_setup(self):
2748 """Default values for all properties""" 2749 2750 self['legs'] = LegList() 2751 # These define the orders restrict the born and loop amplitudes. 2752 self['orders'] = {} 2753 self['model'] = Model() 2754 # Optional number to identify the process 2755 self['id'] = 0 2756 self['uid'] = 0 # should be a uniq id number 2757 # Required s-channels are given as a list of id lists. Only 2758 # diagrams with all s-channels in any of the lists are 2759 # allowed. This enables generating e.g. Z/gamma as s-channel 2760 # propagators. 2761 self['required_s_channels'] = [] 2762 self['forbidden_onsh_s_channels'] = [] 2763 self['forbidden_s_channels'] = [] 2764 self['forbidden_particles'] = [] 2765 self['is_decay_chain'] = False 2766 self['overall_orders'] = {} 2767 # Decay chain processes associated with this process 2768 self['decay_chains'] = ProcessList() 2769 # Legs with decay chains substituted in 2770 self['legs_with_decays'] = LegList() 2771 # Loop particles if the process is to be computed at NLO 2772 self['perturbation_couplings']=[] 2773 # These orders restrict the order of the squared amplitude. 2774 # This dictionary possibly contains a key "WEIGHTED" which 2775 # gives the upper bound for the total weighted order of the 2776 # squared amplitude. 2777 self['squared_orders'] = {} 2778 # The squared order (sqorders) constraints above can either be upper 2779 # bound (<=) or exact match (==) depending on how they were specified 2780 # in the user input. This choice is stored in the dictionary below. 2781 # Notice that the upper bound is the default 2782 self['sqorders_types'] = {} 2783 # other type of constraint at amplitude level 2784 self['constrained_orders'] = {} # {QED: (4,'>')} 2785 self['has_born'] = True 2786 # The NLO_mode is always None for a tree-level process and can be 2787 # 'all', 'real', 'virt' for a loop process. 2788 self['NLO_mode'] = 'tree' 2789 # The user might want to have the individual matrix element evaluations 2790 # for specific values of the coupling orders. The list below specifies 2791 # what are the coupling names which need be individually treated. 2792 # For example, for the process p p > j j [] QED=2 (QED=2 is 2793 # then a squared order constraint), then QED will appear in the 2794 # 'split_orders' list so that the subroutine in matrix.f return the 2795 # evaluation of the matrix element individually for the pure QCD 2796 # contribution 'QCD=4 QED=0', the pure interference 'QCD=2 QED=2' and 2797 # the pure QED contribution of order 'QCD=0 QED=4'. 2798 self['split_orders'] = []
2799
2800 - def filter(self, name, value):
2801 """Filter for valid process property values.""" 2802 2803 if name in ['legs', 'legs_with_decays'] : 2804 if not isinstance(value, LegList): 2805 raise self.PhysicsObjectError, \ 2806 "%s is not a valid LegList object" % str(value) 2807 2808 if name in ['orders', 'overall_orders','squared_orders']: 2809 Interaction.filter(Interaction(), 'orders', value) 2810 2811 if name == 'constrained_orders': 2812 if not isinstance(value, dict): 2813 raise self.PhysicsObjectError, \ 2814 "%s is not a valid dictionary" % str(value) 2815 2816 if name == 'sqorders_types': 2817 if not isinstance(value, dict): 2818 raise self.PhysicsObjectError, \ 2819 "%s is not a valid dictionary" % str(value) 2820 for order in value.keys()+value.values(): 2821 if not isinstance(order, str): 2822 raise self.PhysicsObjectError, \ 2823 "%s is not a valid string" % str(value) 2824 2825 if name == 'split_orders': 2826 if not isinstance(value, list): 2827 raise self.PhysicsObjectError, \ 2828 "%s is not a valid list" % str(value) 2829 for order in value: 2830 if not isinstance(order, str): 2831 raise self.PhysicsObjectError, \ 2832 "%s is not a valid string" % str(value) 2833 2834 if name == 'model': 2835 if not isinstance(value, Model): 2836 raise self.PhysicsObjectError, \ 2837 "%s is not a valid Model object" % str(value) 2838 if name in ['id', 'uid']: 2839 if not isinstance(value, int): 2840 raise self.PhysicsObjectError, \ 2841 "Process %s %s is not an integer" % (name, repr(value)) 2842 2843 if name == 'required_s_channels': 2844 if not isinstance(value, list): 2845 raise self.PhysicsObjectError, \ 2846 "%s is not a valid list" % str(value) 2847 for l in value: 2848 if not isinstance(l, list): 2849 raise self.PhysicsObjectError, \ 2850 "%s is not a valid list of lists" % str(value) 2851 for i in l: 2852 if not isinstance(i, int): 2853 raise self.PhysicsObjectError, \ 2854 "%s is not a valid list of integers" % str(l) 2855 if i == 0: 2856 raise self.PhysicsObjectError, \ 2857 "Not valid PDG code %d for s-channel particle" % i 2858 2859 if name in ['forbidden_onsh_s_channels', 'forbidden_s_channels']: 2860 if not isinstance(value, list): 2861 raise self.PhysicsObjectError, \ 2862 "%s is not a valid list" % str(value) 2863 for i in value: 2864 if not isinstance(i, int): 2865 raise self.PhysicsObjectError, \ 2866 "%s is not a valid list of integers" % str(value) 2867 if i == 0: 2868 raise self.PhysicsObjectError, \ 2869 "Not valid PDG code %d for s-channel particle" % str(value) 2870 2871 if name == 'forbidden_particles': 2872 if not isinstance(value, list): 2873 raise self.PhysicsObjectError, \ 2874 "%s is not a valid list" % str(value) 2875 for i in value: 2876 if not isinstance(i, int): 2877 raise self.PhysicsObjectError, \ 2878 "%s is not a valid list of integers" % str(value) 2879 if i <= 0: 2880 raise self.PhysicsObjectError, \ 2881 "Forbidden particles should have a positive PDG code" % str(value) 2882 2883 if name == 'perturbation_couplings': 2884 if not isinstance(value, list): 2885 raise self.PhysicsObjectError, \ 2886 "%s is not a valid list" % str(value) 2887 for order in value: 2888 if not isinstance(order, str): 2889 raise self.PhysicsObjectError, \ 2890 "%s is not a valid string" % str(value) 2891 2892 if name == 'is_decay_chain': 2893 if not isinstance(value, bool): 2894 raise self.PhysicsObjectError, \ 2895 "%s is not a valid bool" % str(value) 2896 2897 if name == 'has_born': 2898 if not isinstance(value, bool): 2899 raise self.PhysicsObjectError, \ 2900 "%s is not a valid bool" % str(value) 2901 2902 if name == 'decay_chains': 2903 if not isinstance(value, ProcessList): 2904 raise self.PhysicsObjectError, \ 2905 "%s is not a valid ProcessList" % str(value) 2906 2907 if name == 'NLO_mode': 2908 import madgraph.interface.madgraph_interface as mg 2909 if value not in mg.MadGraphCmd._valid_nlo_modes: 2910 raise self.PhysicsObjectError, \ 2911 "%s is not a valid NLO_mode" % str(value) 2912 return True
2913
2914 - def has_multiparticle_label(self):
2915 """ A process, not being a ProcessDefinition never carries multiple 2916 particles labels""" 2917 2918 return False
2919
2920 - def set(self, name, value):
2921 """Special set for forbidden particles - set to abs value.""" 2922 2923 if name == 'forbidden_particles': 2924 try: 2925 value = [abs(i) for i in value] 2926 except Exception: 2927 pass 2928 2929 if name == 'required_s_channels': 2930 # Required s-channels need to be a list of lists of ids 2931 if value and isinstance(value, list) and \ 2932 not isinstance(value[0], list): 2933 value = [value] 2934 2935 return super(Process, self).set(name, value) # call the mother routine
2936
2937 - def get_squared_order_type(self, order):
2938 """ Return what kind of squared order constraint was specified for the 2939 order 'order'.""" 2940 2941 if order in self['sqorders_types'].keys(): 2942 return self['sqorders_types'][order] 2943 else: 2944 # Default behavior '=' is interpreted as upper bound '<=' 2945 return '='
2946
2947 - def get(self, name):
2948 """Special get for legs_with_decays""" 2949 2950 if name == 'legs_with_decays': 2951 self.get_legs_with_decays() 2952 2953 if name == 'sqorders_types': 2954 # We must make sure that there is a type for each sqorder defined 2955 for order in self['squared_orders'].keys(): 2956 if order not in self['sqorders_types']: 2957 # Then assign its type to the default '=' 2958 self['sqorders_types'][order]='=' 2959 2960 return super(Process, self).get(name) # call the mother routine
2961 2962 2963
2964 - def get_sorted_keys(self):
2965 """Return process property names as a nicely sorted list.""" 2966 2967 return ['legs', 'orders', 'overall_orders', 'squared_orders', 2968 'constrained_orders', 2969 'model', 'id', 'required_s_channels', 2970 'forbidden_onsh_s_channels', 'forbidden_s_channels', 2971 'forbidden_particles', 'is_decay_chain', 'decay_chains', 2972 'legs_with_decays', 'perturbation_couplings', 'has_born', 2973 'NLO_mode','split_orders']
2974
2975 - def nice_string(self, indent=0, print_weighted = True, prefix=True):
2976 """Returns a nicely formated string about current process 2977 content. Since the WEIGHTED order is automatically set and added to 2978 the user-defined list of orders, it can be ommitted for some info 2979 displays.""" 2980 2981 if isinstance(prefix, bool) and prefix: 2982 mystr = " " * indent + "Process: " 2983 elif isinstance(prefix, str): 2984 mystr = prefix 2985 else: 2986 mystr = "" 2987 prevleg = None 2988 for leg in self['legs']: 2989 mypart = self['model'].get('particle_dict')[leg['id']] 2990 if prevleg and prevleg['state'] == False \ 2991 and leg['state'] == True: 2992 # Separate initial and final legs by > 2993 mystr = mystr + '> ' 2994 # Add required s-channels 2995 if self['required_s_channels'] and \ 2996 self['required_s_channels'][0]: 2997 mystr += "|".join([" ".join([self['model'].\ 2998 get('particle_dict')[req_id].get_name() \ 2999 for req_id in id_list]) \ 3000 for id_list in self['required_s_channels']]) 3001 mystr = mystr + ' > ' 3002 3003 mystr = mystr + mypart.get_name() + ' ' 3004 #mystr = mystr + '(%i) ' % leg['number'] 3005 prevleg = leg 3006 3007 # Add orders 3008 if self['orders']: 3009 to_add = [] 3010 for key in sorted(self['orders'].keys()): 3011 if not print_weighted and key == 'WEIGHTED': 3012 continue 3013 value = int(self['orders'][key]) 3014 if key in self['squared_orders']: 3015 if self.get_squared_order_type(key) in ['<=', '==', '='] and \ 3016 self['squared_orders'][key] == value: 3017 continue 3018 if self.get_squared_order_type(key) in ['>'] and value == 99: 3019 continue 3020 if key in self['constrained_orders']: 3021 if value == self['constrained_orders'][key][0] and\ 3022 self['constrained_orders'][key][1] in ['=', '<=', '==']: 3023 continue 3024 if value == 0: 3025 to_add.append('%s=0' % key) 3026 else: 3027 to_add.append('%s<=%s' % (key,value)) 3028 3029 if to_add: 3030 mystr = mystr + " ".join(to_add) + ' ' 3031 3032 if self['constrained_orders']: 3033 mystr = mystr + " ".join('%s%s%d' % (key, 3034 self['constrained_orders'][key][1], self['constrained_orders'][key][0]) 3035 for key in sorted(self['constrained_orders'].keys())) + ' ' 3036 3037 # Add perturbation_couplings 3038 if self['perturbation_couplings']: 3039 mystr = mystr + '[ ' 3040 if self['NLO_mode']!='tree': 3041 if self['NLO_mode']=='virt' and not self['has_born']: 3042 mystr = mystr + 'sqrvirt = ' 3043 else: 3044 mystr = mystr + self['NLO_mode'] + ' = ' 3045 for order in self['perturbation_couplings']: 3046 mystr = mystr + order + ' ' 3047 mystr = mystr + '] ' 3048 3049 # Add squared orders 3050 if self['squared_orders']: 3051 to_add = [] 3052 for key in sorted(self['squared_orders'].keys()): 3053 if not print_weighted and key == 'WEIGHTED': 3054 continue 3055 if key in self['constrained_orders']: 3056 if self['constrained_orders'][key][0] == self['squared_orders'][key]/2 and \ 3057 self['constrained_orders'][key][1] == self.get_squared_order_type(key): 3058 continue 3059 to_add.append(key + '^2%s%d'%\ 3060 (self.get_squared_order_type(key),self['squared_orders'][key])) 3061 3062 if to_add: 3063 mystr = mystr + " ".join(to_add) + ' ' 3064 3065 3066 # Add forbidden s-channels 3067 if self['forbidden_onsh_s_channels']: 3068 mystr = mystr + '$ ' 3069 for forb_id in self['forbidden_onsh_s_channels']: 3070 forbpart = self['model'].get('particle_dict')[forb_id] 3071 mystr = mystr + forbpart.get_name() + ' ' 3072 3073 # Add double forbidden s-channels 3074 if self['forbidden_s_channels']: 3075 mystr = mystr + '$$ ' 3076 for forb_id in self['forbidden_s_channels']: 3077 forbpart = self['model'].get('particle_dict')[forb_id] 3078 mystr = mystr + forbpart.get_name() + ' ' 3079 3080 # Add forbidden particles 3081 if self['forbidden_particles']: 3082 mystr = mystr + '/ ' 3083 for forb_id in self['forbidden_particles']: 3084 forbpart = self['model'].get('particle_dict')[forb_id] 3085 mystr = mystr + forbpart.get_name() + ' ' 3086 3087 # Remove last space 3088 mystr = mystr[:-1] 3089 3090 if self.get('id') or self.get('overall_orders'): 3091 mystr += " @%d" % self.get('id') 3092 if self.get('overall_orders'): 3093 mystr += " " + " ".join([key + '=' + repr(self['orders'][key]) \ 3094 for key in sorted(self['orders'])]) + ' ' 3095 3096 if not self.get('decay_chains'): 3097 return mystr 3098 3099 for decay in self['decay_chains']: 3100 mystr = mystr + '\n' + \ 3101 decay.nice_string(indent + 2).replace('Process', 'Decay') 3102 3103 return mystr
3104
3105 - def input_string(self):
3106 """Returns a process string corresponding to the input string 3107 in the command line interface.""" 3108 3109 mystr = "" 3110 prevleg = None 3111 3112 for leg in self['legs']: 3113 mypart = self['model'].get('particle_dict')[leg['id']] 3114 if prevleg and prevleg['state'] == False \ 3115 and leg['state'] == True: 3116 # Separate initial and final legs by ">" 3117 mystr = mystr + '> ' 3118 # Add required s-channels 3119 if self['required_s_channels'] and \ 3120 self['required_s_channels'][0]: 3121 mystr += "|".join([" ".join([self['model'].\ 3122 get('particle_dict')[req_id].get_name() \ 3123 for req_id in id_list]) \ 3124 for id_list in self['required_s_channels']]) 3125 mystr = mystr + '> ' 3126 3127 mystr = mystr + mypart.get_name() + ' ' 3128 #mystr = mystr + '(%i) ' % leg['number'] 3129 prevleg = leg 3130 3131 if self['orders']: 3132 mystr = mystr + " ".join([key + '=' + repr(self['orders'][key]) \ 3133 for key in self['orders']]) + ' ' 3134 3135 # Add squared orders 3136 if self['squared_orders']: 3137 mystr = mystr + " ".join([key + '^2=' + repr(self['squared_orders'][key]) \ 3138 for key in self['squared_orders']]) + ' ' 3139 3140 # Add perturbation orders 3141 if self['perturbation_couplings']: 3142 mystr = mystr + '[ ' 3143 if self['NLO_mode']: 3144 mystr = mystr + self['NLO_mode'] 3145 if not self['has_born']: 3146 mystr = mystr + '^2' 3147 mystr = mystr + '= ' 3148 3149 for order in self['perturbation_couplings']: 3150 mystr = mystr + order + ' ' 3151 mystr = mystr + '] ' 3152 3153 3154 # Add forbidden s-channels 3155 if self['forbidden_onsh_s_channels']: 3156 mystr = mystr + '$ ' 3157 for forb_id in self['forbidden_onsh_s_channels']: 3158 forbpart = self['model'].get('particle_dict')[forb_id] 3159 mystr = mystr + forbpart.get_name() + ' ' 3160 3161 # Add double forbidden s-channels 3162 if self['forbidden_s_channels']: 3163 mystr = mystr + '$$ ' 3164 for forb_id in self['forbidden_s_channels']: 3165 forbpart = self['model'].get('particle_dict')[forb_id] 3166 mystr = mystr + forbpart.get_name() + ' ' 3167 3168 # Add forbidden particles 3169 if self['forbidden_particles']: 3170 mystr = mystr + '/ ' 3171 for forb_id in self['forbidden_particles']: 3172 forbpart = self['model'].get('particle_dict')[forb_id] 3173 mystr = mystr + forbpart.get_name() + ' ' 3174 3175 # Remove last space 3176 mystr = mystr[:-1] 3177 3178 if self.get('overall_orders'): 3179 mystr += " @%d" % self.get('id') 3180 if self.get('overall_orders'): 3181 mystr += " " + " ".join([key + '=' + repr(self['orders'][key]) \ 3182 for key in sorted(self['orders'])]) + ' ' 3183 3184 if not self.get('decay_chains'): 3185 return mystr 3186 3187 for decay in self['decay_chains']: 3188 paren1 = '' 3189 paren2 = '' 3190 if decay.get('decay_chains'): 3191 paren1 = '(' 3192 paren2 = ')' 3193 mystr += ', ' + paren1 + decay.input_string() + paren2 3194 3195 return mystr
3196
3197 - def base_string(self):
3198 """Returns a string containing only the basic process (w/o decays).""" 3199 3200 mystr = "" 3201 prevleg = None 3202 for leg in self.get_legs_with_decays(): 3203 mypart = self['model'].get('particle_dict')[leg['id']] 3204 if prevleg and prevleg['state'] == False \ 3205 and leg['state'] == True: 3206 # Separate initial and final legs by ">" 3207 mystr = mystr + '> ' 3208 mystr = mystr + mypart.get_name() + ' ' 3209 prevleg = leg 3210 3211 # Remove last space 3212 return mystr[:-1]
3213
3214 - def shell_string(self, schannel=True, forbid=True, main=True, pdg_order=False, 3215 print_id = True):
3216 """Returns process as string with '~' -> 'x', '>' -> '_', 3217 '+' -> 'p' and '-' -> 'm', including process number, 3218 intermediate s-channels and forbidden particles, 3219 pdg_order allow to order to leg order by pid.""" 3220 3221 mystr = "" 3222 if not self.get('is_decay_chain') and print_id: 3223 mystr += "%d_" % self['id'] 3224 3225 prevleg = None 3226 if pdg_order: 3227 legs = [l for l in self['legs'][1:]] 3228 def order_leg(l1,l2): 3229 id1 = l1.get('id') 3230 id2 = l2.get('id') 3231 return id2-id1
3232 legs.sort(cmp=order_leg) 3233 legs.insert(0, self['legs'][0]) 3234 else: 3235 legs = self['legs'] 3236 3237 3238 for leg in legs: 3239 mypart = self['model'].get('particle_dict')[leg['id']] 3240 if prevleg and prevleg['state'] == False \ 3241 and leg['state'] == True: 3242 # Separate initial and final legs by ">" 3243 mystr = mystr + '_' 3244 # Add required s-channels 3245 if self['required_s_channels'] and \ 3246 self['required_s_channels'][0] and schannel: 3247 mystr += "_or_".join(["".join([self['model'].\ 3248 get('particle_dict')[req_id].get_name() \ 3249 for req_id in id_list]) \ 3250 for id_list in self['required_s_channels']]) 3251 mystr = mystr + '_' 3252 if mypart['is_part']: 3253 mystr = mystr + mypart['name'] 3254 else: 3255 mystr = mystr + mypart['antiname'] 3256 prevleg = leg 3257 3258 # Check for forbidden particles 3259 if self['forbidden_particles'] and forbid: 3260 mystr = mystr + '_no_' 3261 for forb_id in self['forbidden_particles']: 3262 forbpart = self['model'].get('particle_dict')[forb_id] 3263 mystr = mystr + forbpart.get_name() 3264 3265 # Replace '~' with 'x' 3266 mystr = mystr.replace('~', 'x') 3267 # Replace '+' with 'p' 3268 mystr = mystr.replace('+', 'p') 3269 # Replace '-' with 'm' 3270 mystr = mystr.replace('-', 'm') 3271 # Just to be safe, remove all spaces 3272 mystr = mystr.replace(' ', '') 3273 3274 for decay in self.get('decay_chains'): 3275 mystr = mystr + "_" + decay.shell_string(schannel,forbid, main=False, 3276 pdg_order=pdg_order) 3277 3278 # Too long name are problematic so restrict them to a maximal of 70 char 3279 if len(mystr) > 64 and main: 3280 if schannel and forbid: 3281 out = self.shell_string(True, False, True, pdg_order) 3282 elif schannel: 3283 out = self.shell_string(False, False, True, pdg_order) 3284 else: 3285 out = mystr[:64] 3286 if not out.endswith('_%s' % self['uid']): 3287 out += '_%s' % self['uid'] 3288 return out 3289 3290 return mystr
3291
3292 - def shell_string_v4(self):
3293 """Returns process as v4-compliant string with '~' -> 'x' and 3294 '>' -> '_'""" 3295 3296 mystr = "%d_" % self['id'] 3297 prevleg = None 3298 for leg in self.get_legs_with_decays(): 3299 mypart = self['model'].get('particle_dict')[leg['id']] 3300 if prevleg and prevleg['state'] == False \ 3301 and leg['state'] == True: 3302 # Separate initial and final legs by ">" 3303 mystr = mystr + '_' 3304 if mypart['is_part']: 3305 mystr = mystr + mypart['name'] 3306 else: 3307 mystr = mystr + mypart['antiname'] 3308 prevleg = leg 3309 3310 # Replace '~' with 'x' 3311 mystr = mystr.replace('~', 'x') 3312 # Just to be safe, remove all spaces 3313 mystr = mystr.replace(' ', '') 3314 3315 return mystr
3316 3317 # Helper functions 3318
3319 - def are_negative_orders_present(self):
3320 """ Check iteratively that no coupling order constraint include negative 3321 values.""" 3322 3323 if any(val<0 for val in self.get('orders').values()+\ 3324 self.get('squared_orders').values()): 3325 return True 3326 3327 for procdef in self['decay_chains']: 3328 if procdef.are_negative_orders_present(): 3329 return True 3330 3331 return False
3332
3333 - def are_decays_perturbed(self):
3334 """ Check iteratively that the decayed processes are not perturbed """ 3335 3336 for procdef in self['decay_chains']: 3337 if procdef['perturbation_couplings'] or procdef.are_decays_perturbed(): 3338 return True 3339 return False
3340
3341 - def decays_have_squared_orders(self):
3342 """ Check iteratively that the decayed processes are not perturbed """ 3343 3344 for procdef in self['decay_chains']: 3345 if procdef['squared_orders']!={} or procdef.decays_have_squared_orders(): 3346 return True 3347 return False
3348
3349 - def get_ninitial(self):
3350 """Gives number of initial state particles""" 3351 3352 return len(filter(lambda leg: leg.get('state') == False, 3353 self.get('legs')))
3354
3355 - def get_initial_ids(self):
3356 """Gives the pdg codes for initial state particles""" 3357 3358 return [leg.get('id') for leg in \ 3359 filter(lambda leg: leg.get('state') == False, 3360 self.get('legs'))]
3361
3362 - def get_initial_pdg(self, number):
3363 """Return the pdg codes for initial state particles for beam number""" 3364 3365 legs = filter(lambda leg: leg.get('state') == False and\ 3366 leg.get('number') == number, 3367 self.get('legs')) 3368 if not legs: 3369 return None 3370 else: 3371 return legs[0].get('id')
3372
3373 - def get_initial_final_ids(self):
3374 """return a tuple of two tuple containing the id of the initial/final 3375 state particles. Each list is ordered""" 3376 3377 initial = [] 3378 final = [l.get('id') for l in self.get('legs')\ 3379 if l.get('state') or initial.append(l.get('id'))] 3380 initial.sort() 3381 final.sort() 3382 return (tuple(initial), tuple(final))
3383
3384 - def get_final_ids_after_decay(self):
3385 """Give the pdg code of the process including decay""" 3386 3387 finals = self.get_final_ids() 3388 for proc in self.get('decay_chains'): 3389 init = proc.get_initial_ids()[0] 3390 #while 1: 3391 try: 3392 pos = finals.index(init) 3393 except: 3394 break 3395 finals[pos] = proc.get_final_ids_after_decay() 3396 output = [] 3397 for d in finals: 3398 if isinstance(d, list): 3399 output += d 3400 else: 3401 output.append(d) 3402 3403 return output
3404 3405
3406 - def get_final_legs(self):
3407 """Gives the final state legs""" 3408 3409 return filter(lambda leg: leg.get('state') == True, 3410 self.get('legs'))
3411
3412 - def get_final_ids(self):
3413 """Gives the pdg codes for final state particles""" 3414 3415 return [l.get('id') for l in self.get_final_legs()]
3416 3417
3418 - def get_legs_with_decays(self):
3419 """Return process with all decay chains substituted in.""" 3420 3421 if self['legs_with_decays']: 3422 return self['legs_with_decays'] 3423 3424 legs = copy.deepcopy(self.get('legs')) 3425 org_decay_chains = copy.copy(self.get('decay_chains')) 3426 sorted_decay_chains = [] 3427 # Sort decay chains according to leg order 3428 for leg in legs: 3429 if not leg.get('state'): continue 3430 org_ids = [l.get('legs')[0].get('id') for l in \ 3431 org_decay_chains] 3432 if leg.get('id') in org_ids: 3433 sorted_decay_chains.append(org_decay_chains.pop(\ 3434 org_ids.index(leg.get('id')))) 3435 assert not org_decay_chains 3436 ileg = 0 3437 for decay in sorted_decay_chains: 3438 while legs[ileg].get('state') == False or \ 3439 legs[ileg].get('id') != decay.get('legs')[0].get('id'): 3440 ileg = ileg + 1 3441 decay_legs = decay.get_legs_with_decays() 3442 legs = legs[:ileg] + decay_legs[1:] + legs[ileg+1:] 3443 ileg = ileg + len(decay_legs) - 1 3444 3445 # Replace legs with copies 3446 legs = [copy.copy(l) for l in legs] 3447 3448 for ileg, leg in enumerate(legs): 3449 leg.set('number', ileg + 1) 3450 3451 self['legs_with_decays'] = LegList(legs) 3452 3453 return self['legs_with_decays']
3454
3455 - def get_tag(self):
3456 """return the tag for standalone call""" 3457 3458 initial = [] #filled in the next line 3459 final = [l.get('id') for l in self.get('legs')\ 3460 if l.get('state') or initial.append(l.get('id'))] 3461 decay_finals = self.get_final_ids_after_decay() 3462 decay_finals.sort() 3463 tag = (tuple(initial), tuple(decay_finals)) 3464 return tag
3465 3466
3467 - def list_for_sort(self):
3468 """Output a list that can be compared to other processes as: 3469 [id, sorted(initial leg ids), sorted(final leg ids), 3470 sorted(decay list_for_sorts)]""" 3471 3472 sorted_list = [self.get('id'), 3473 sorted(self.get_initial_ids()), 3474 sorted(self.get_final_ids())] 3475 3476 if self.get('decay_chains'): 3477 sorted_list.extend(sorted([d.list_for_sort() for d in \ 3478 self.get('decay_chains')])) 3479 3480 return sorted_list
3481
3482 - def compare_for_sort(self, other):
3483 """Sorting routine which allows to sort processes for 3484 comparison. Compare only process id and legs.""" 3485 3486 if self.list_for_sort() > other.list_for_sort(): 3487 return 1 3488 if self.list_for_sort() < other.list_for_sort(): 3489 return -1 3490 return 0
3491
3492 - def identical_particle_factor(self):
3493 """Calculate the denominator factor for identical final state particles 3494 """ 3495 3496 final_legs = filter(lambda leg: leg.get('state') == True, \ 3497 self.get_legs_with_decays()) 3498 3499 identical_indices = {} 3500 for leg in final_legs: 3501 if leg.get('id') in identical_indices: 3502 identical_indices[leg.get('id')] = \ 3503 identical_indices[leg.get('id')] + 1 3504 else: 3505 identical_indices[leg.get('id')] = 1 3506 return reduce(lambda x, y: x * y, [ math.factorial(val) for val in \ 3507 identical_indices.values() ], 1)
3508
3509 - def check_expansion_orders(self):
3510 """Ensure that maximum expansion orders from the model are 3511 properly taken into account in the process""" 3512 3513 # Ensure that expansion orders are taken into account 3514 expansion_orders = self.get('model').get('expansion_order') 3515 orders = self.get('orders') 3516 sq_orders = self.get('squared_orders') 3517 3518 tmp = [(k,v) for (k,v) in expansion_orders.items() if 0 < v < 99] 3519 for (k,v) in tmp: 3520 if k in orders: 3521 if v < orders[k]: 3522 if k in sq_orders.keys() and \ 3523 (sq_orders[k]>v or sq_orders[k]<0): 3524 logger.warning( 3525 '''The process with the squared coupling order (%s^2%s%s) specified can potentially 3526 recieve contributions with powers of the coupling %s larger than the maximal 3527 value allowed by the model builder (%s). Hence, MG5_aMC sets the amplitude order 3528 for that coupling to be this maximal one. '''%(k,self.get('sqorders_types')[k], 3529 self.get('squared_orders')[k],k,v)) 3530 else: 3531 logger.warning( 3532 '''The coupling order (%s=%s) specified is larger than the one allowed 3533 by the model builder. The maximal value allowed is %s. 3534 We set the %s order to this value''' % (k,orders[k],v,k)) 3535 orders[k] = v 3536 else: 3537 orders[k] = v
3538
3539 - def __eq__(self, other):
3540 """Overloading the equality operator, so that only comparison 3541 of process id and legs is being done, using compare_for_sort.""" 3542 3543 if not isinstance(other, Process): 3544 return False 3545 3546 return self.compare_for_sort(other) == 0
3547
3548 - def __ne__(self, other):
3549 return not self.__eq__(other)
3550
3551 #=============================================================================== 3552 # ProcessList 3553 #=============================================================================== 3554 -class ProcessList(PhysicsObjectList):
3555 """List of Process objects 3556 """ 3557
3558 - def is_valid_element(self, obj):
3559 """Test if object obj is a valid Process for the list.""" 3560 3561 return isinstance(obj, Process)
3562
3563 - def nice_string(self, indent = 0):
3564 """Returns a nicely formatted string of the matrix element processes.""" 3565 3566 mystr = "\n".join([p.nice_string(indent) for p in self]) 3567 3568 return mystr
3569
3570 #=============================================================================== 3571 # ProcessDefinition 3572 #=============================================================================== 3573 -class ProcessDefinition(Process):
3574 """ProcessDefinition: list of multilegs (ordered) 3575 dictionary of orders 3576 model 3577 process id 3578 """ 3579
3580 - def default_setup(self):
3581 """Default values for all properties""" 3582 3583 super(ProcessDefinition, self).default_setup() 3584 3585 self['legs'] = MultiLegList() 3586 # Decay chain processes associated with this process 3587 self['decay_chains'] = ProcessDefinitionList() 3588 if 'legs_with_decays' in self: del self['legs_with_decays']
3589
3590 - def filter(self, name, value):
3591 """Filter for valid process property values.""" 3592 3593 if name == 'legs': 3594 if not isinstance(value, MultiLegList): 3595 raise self.PhysicsObjectError, \ 3596 "%s is not a valid MultiLegList object" % str(value) 3597 elif name == 'decay_chains': 3598 if not isinstance(value, ProcessDefinitionList): 3599 raise self.PhysicsObjectError, \ 3600 "%s is not a valid ProcessDefinitionList" % str(value) 3601 3602 else: 3603 return super(ProcessDefinition, self).filter(name, value) 3604 3605 return True
3606
3607 - def has_multiparticle_label(self):
3608 """ Check that this process definition will yield a single process, as 3609 each multileg only has one leg""" 3610 3611 for process in self['decay_chains']: 3612 if process.has_multiparticle_label(): 3613 return True 3614 3615 for mleg in self['legs']: 3616 if len(mleg['ids'])>1: 3617 return True 3618 3619 return False
3620
3621 - def get_sorted_keys(self):
3622 """Return process property names as a nicely sorted list.""" 3623 3624 keys = super(ProcessDefinition, self).get_sorted_keys() 3625 keys.remove('legs_with_decays') 3626 3627 return keys
3628
3629 - def get_minimum_WEIGHTED(self):
3630 """Retrieve the minimum starting guess for WEIGHTED order, to 3631 use in find_optimal_process_orders in MultiProcess diagram 3632 generation (as well as particles and hierarchy). The algorithm: 3633 3634 1) Pick out the legs in the multiprocess according to the 3635 highest hierarchy represented (so don't mix particles from 3636 different hierarchy classes in the same multiparticles!) 3637 3638 2) Find the starting maximum WEIGHTED order as the sum of the 3639 highest n-2 weighted orders 3640 3641 3) Pick out required s-channel particle hierarchies, and use 3642 the highest of the maximum WEIGHTED order from the legs and 3643 the minimum WEIGHTED order extracted from 2*s-channel 3644 hierarchys plus the n-2-2*(number of s-channels) lowest 3645 leg weighted orders. 3646 """ 3647 3648 model = self.get('model') 3649 3650 # Extract hierarchy and particles corresponding to the 3651 # different hierarchy levels from the model 3652 particles, hierarchy = model.get_particles_hierarchy() 3653 # Find legs corresponding to the different orders 3654 # making sure we look at lowest hierarchy first for each leg 3655 max_order_now = [] 3656 new_legs = copy.copy(self.get('legs')) 3657 import madgraph.core.base_objects as base_objects 3658 for parts, value in zip(particles, hierarchy): 3659 ileg = 0 3660 while ileg < len(new_legs): 3661 if any([id in parts for id in new_legs[ileg].get('ids')]): 3662 max_order_now.append(value) 3663 new_legs.pop(ileg) 3664 else: 3665 ileg += 1 3666 3667 # Now remove the two lowest orders to get maximum (since the 3668 # number of interactions is n-2) 3669 max_order_now = sorted(max_order_now)[2:] 3670 3671 # Find s-channel propagators corresponding to the different orders 3672 max_order_prop = [] 3673 for idlist in self.get('required_s_channels'): 3674 max_order_prop.append([0,0]) 3675 for id in idlist: 3676 for parts, value in zip(particles, hierarchy): 3677 if id in parts: 3678 max_order_prop[-1][0] += 2*value 3679 max_order_prop[-1][1] += 1 3680 break 3681 3682 if max_order_prop: 3683 if len(max_order_prop) >1: 3684 max_order_prop = min(*max_order_prop, key=lambda x:x[0]) 3685 else: 3686 max_order_prop = max_order_prop[0] 3687 3688 # Use either the max_order from the external legs or 3689 # the maximum order from the s-channel propagators, plus 3690 # the appropriate lowest orders from max_order_now 3691 max_order_now = max(sum(max_order_now), 3692 max_order_prop[0] + \ 3693 sum(max_order_now[:-2 * max_order_prop[1]])) 3694 else: 3695 max_order_now = sum(max_order_now) 3696 3697 return max_order_now, particles, hierarchy
3698
3699 - def __iter__(self):
3700 """basic way to loop over all the process definition. 3701 not used by MG which used some smarter version (use by ML)""" 3702 3703 isids = [leg['ids'] for leg in self['legs'] \ 3704 if leg['state'] == False] 3705 fsids = [leg['ids'] for leg in self['legs'] \ 3706 if leg['state'] == True] 3707 3708 red_isidlist = [] 3709 # Generate all combinations for the initial state 3710 for prod in itertools.product(*isids): 3711 islegs = [Leg({'id':id, 'state': False}) for id in prod] 3712 if tuple(sorted(prod)) in red_isidlist: 3713 continue 3714 red_isidlist.append(tuple(sorted(prod))) 3715 red_fsidlist = [] 3716 for prod in itertools.product(*fsids): 3717 # Remove double counting between final states 3718 if tuple(sorted(prod)) in red_fsidlist: 3719 continue 3720 red_fsidlist.append(tuple(sorted(prod))) 3721 leg_list = [copy.copy(leg) for leg in islegs] 3722 leg_list.extend([Leg({'id':id, 'state': True}) for id in prod]) 3723 legs = LegList(leg_list) 3724 process = self.get_process_with_legs(legs) 3725 yield process
3726
3727 - def nice_string(self, indent=0, print_weighted=False, prefix=True):
3728 """Returns a nicely formated string about current process 3729 content""" 3730 3731 if prefix: 3732 mystr = " " * indent + "Process: " 3733 else: 3734 mystr="" 3735 prevleg = None 3736 for leg in self['legs']: 3737 myparts = \ 3738 "/".join([self['model'].get('particle_dict')[id].get_name() \ 3739 for id in leg.get('ids')]) 3740 if prevleg and prevleg['state'] == False \ 3741 and leg['state'] == True: 3742 # Separate initial and final legs by ">" 3743 mystr = mystr + '> ' 3744 # Add required s-channels 3745 if self['required_s_channels'] and \ 3746 self['required_s_channels'][0]: 3747 mystr += "|".join([" ".join([self['model'].\ 3748 get('particle_dict')[req_id].get_name() \ 3749 for req_id in id_list]) \ 3750 for id_list in self['required_s_channels']]) 3751 mystr = mystr + '> ' 3752 3753 mystr = mystr + myparts + ' ' 3754 #mystr = mystr + '(%i) ' % leg['number'] 3755 prevleg = leg 3756 3757 # Add forbidden s-channels 3758 if self['forbidden_onsh_s_channels']: 3759 mystr = mystr + '$ ' 3760 for forb_id in self['forbidden_onsh_s_channels']: 3761 forbpart = self['model'].get('particle_dict')[forb_id] 3762 mystr = mystr + forbpart.get_name() + ' ' 3763 3764 # Add double forbidden s-channels 3765 if self['forbidden_s_channels']: 3766 mystr = mystr + '$$ ' 3767 for forb_id in self['forbidden_s_channels']: 3768 forbpart = self['model'].get('particle_dict')[forb_id] 3769 mystr = mystr + forbpart.get_name() + ' ' 3770 3771 # Add forbidden particles 3772 if self['forbidden_particles']: 3773 mystr = mystr + '/ ' 3774 for forb_id in self['forbidden_particles']: 3775 forbpart = self['model'].get('particle_dict')[forb_id] 3776 mystr = mystr + forbpart.get_name() + ' ' 3777 3778 if self['orders']: 3779 mystr = mystr + " ".join([key + '=' + repr(self['orders'][key]) \ 3780 for key in sorted(self['orders'])]) + ' ' 3781 3782 if self['constrained_orders']: 3783 mystr = mystr + " ".join('%s%s%d' % (key, operator, value) for 3784 (key,(value, operator)) 3785 in self['constrained_orders'].items()) + ' ' 3786 3787 # Add perturbation_couplings 3788 if self['perturbation_couplings']: 3789 mystr = mystr + '[ ' 3790 if self['NLO_mode']!='tree': 3791 if self['NLO_mode']=='virt' and not self['has_born']: 3792 mystr = mystr + 'sqrvirt = ' 3793 else: 3794 mystr = mystr + self['NLO_mode'] + ' = ' 3795 for order in self['perturbation_couplings']: 3796 mystr = mystr + order + ' ' 3797 mystr = mystr + '] ' 3798 3799 if self['squared_orders']: 3800 mystr = mystr + " ".join([key + '^2%s%d'%\ 3801 (self.get_squared_order_type(key),self['squared_orders'][key]) \ 3802 for key in self['squared_orders'].keys() \ 3803 if print_weighted or key!='WEIGHTED']) + ' ' 3804 3805 # Remove last space 3806 mystr = mystr[:-1] 3807 3808 if self.get('id') or self.get('overall_orders'): 3809 mystr += " @%d" % self.get('id') 3810 if self.get('overall_orders'): 3811 mystr += " " + " ".join([key + '=' + repr(self['orders'][key]) \ 3812 for key in sorted(self['orders'])]) + ' ' 3813 3814 if not self.get('decay_chains'): 3815 return mystr 3816 3817 for decay in self['decay_chains']: 3818 mystr = mystr + '\n' + \ 3819 decay.nice_string(indent + 2).replace('Process', 'Decay') 3820 3821 return mystr
3822
3823 - def get_process_with_legs(self, LegList):
3824 """ Return a Process object which has the same properties of this 3825 ProcessDefinition but with the specified LegList as legs attribute. 3826 """ 3827 3828 return Process({\ 3829 'legs': LegList, 3830 'model':self.get('model'), 3831 'id': self.get('id'), 3832 'orders': self.get('orders'), 3833 'sqorders_types': self.get('sqorders_types'), 3834 'squared_orders': self.get('squared_orders'), 3835 'constrained_orders': self.get('constrained_orders'), 3836 'has_born': self.get('has_born'), 3837 'required_s_channels': self.get('required_s_channels'), 3838 'forbidden_onsh_s_channels': self.get('forbidden_onsh_s_channels'), 3839 'forbidden_s_channels': self.get('forbidden_s_channels'), 3840 'forbidden_particles': self.get('forbidden_particles'), 3841 'perturbation_couplings': self.get('perturbation_couplings'), 3842 'is_decay_chain': self.get('is_decay_chain'), 3843 'overall_orders': self.get('overall_orders'), 3844 'split_orders': self.get('split_orders'), 3845 'NLO_mode': self.get('NLO_mode') 3846 })
3847
3848 - def get_process(self, initial_state_ids, final_state_ids):
3849 """ Return a Process object which has the same properties of this 3850 ProcessDefinition but with the specified given leg ids. """ 3851 3852 # First make sure that the desired particle ids belong to those defined 3853 # in this process definition. 3854 my_isids = [leg.get('ids') for leg in self.get('legs') \ 3855 if not leg.get('state')] 3856 my_fsids = [leg.get('ids') for leg in self.get('legs') \ 3857 if leg.get('state')] 3858 for i, is_id in enumerate(initial_state_ids): 3859 assert is_id in my_isids[i] 3860 for i, fs_id in enumerate(final_state_ids): 3861 assert fs_id in my_fsids[i] 3862 3863 return self.get_process_with_legs(LegList(\ 3864 [Leg({'id': id, 'state':False}) for id in initial_state_ids] + \ 3865 [Leg({'id': id, 'state':True}) for id in final_state_ids]))
3866
3867 - def __eq__(self, other):
3868 """Overloading the equality operator, so that only comparison 3869 of process id and legs is being done, using compare_for_sort.""" 3870 3871 return super(Process, self).__eq__(other)
3872
3873 #=============================================================================== 3874 # ProcessDefinitionList 3875 #=============================================================================== 3876 -class ProcessDefinitionList(PhysicsObjectList):
3877 """List of ProcessDefinition objects 3878 """ 3879
3880 - def is_valid_element(self, obj):
3881 """Test if object obj is a valid ProcessDefinition for the list.""" 3882 3883 return isinstance(obj, ProcessDefinition)
3884
3885 #=============================================================================== 3886 # Global helper functions 3887 #=============================================================================== 3888 3889 -def make_unique(doubletlist):
3890 """Make sure there are no doublets in the list doubletlist. 3891 Note that this is a slow implementation, so don't use if speed 3892 is needed""" 3893 3894 assert isinstance(doubletlist, list), \ 3895 "Argument to make_unique must be list" 3896 3897 3898 uniquelist = [] 3899 for elem in doubletlist: 3900 if elem not in uniquelist: 3901 uniquelist.append(elem) 3902 3903 doubletlist[:] = uniquelist[:]
3904