Initialize/finalize |
|
Utilities | |
 Allocate GPU device memory | Imalloc, smalloc, etc |
 Allocate CPU host memory | Imalloc_cpu, smalloc_cpu, etc |
 Allocate pinned CPU host memory | Imalloc_pinned, smalloc_pinned, etc |
 Communication CPU <=> GPU | |
  copyvector: GPU => GPU | |
  getvector: GPU => CPU | |
  setvector: CPU => GPU | |
  copymatrix: GPU => GPU | |
  getmatrix: GPU => CPU | |
  setmatrix: CPU => GPU | |
  getmatrix_transpose: GPU => CPU | |
  setmatrix_transpose: CPU => GPU | |
  getmatrix_bcyclic: multi-GPU => CPU | |
  setmatrix_bcyclic: CPU => multi-GPU | |
 Constants and converters | Mappings between LAPACK, MAGMA, CBLAS, cuBLAS, and clBLAS constants |
  Map LAPACK => MAGMA | Convert LAPACK character constants to MAGMA constants |
  Map MAGMA => LAPACK | Convert MAGMA constants to LAPACK constants |
  Map CBLAS => MAGMA | Convert MAGMA constants to CBLAS constants |
  Map clBLAS => MAGMA | Convert MAGMA constants to AMD clBLAS constants |
  Map cuBLAS => MAGMA | Convert MAGMA constants to NVIDIA cuBLAS constants |
 Device management | |
 Queue management | |
 Event management | |
 Error handling | |
  MAGMA error codes | |
 Miscellaneous utilities | |
  make_lwork: Round lwork for float | |
 Print matrix | |
 Timer | |
 Tuning (get_nb, etc.) | Optimal block sizes vary with GPU and, to a lesser extent, CPU |
Internal routines | ============================================================ |
 Error handling | |
 Testing routines | |
 Thread management | |
 Timer utilities | |
 QR panel to q, q to panel | |
 GPU Kernels | |
Dense linear algebra | ============================================================ |
 Linear system solvers | Solves \( Ax = b \) |
  General matrices: LU | Solves \( Ax = b \) using LU factorization for general matrices |
   gesv: Solves Ax = b using LU factorization (driver) | |
   getrf: LU factorization | |
   getrs: LU forward and back solves | |
   getri: LU inverse | |
   Auxiliary routines | |
    getf2: LU panel factorization | |
    laswp: Swap rows | |
   No pivoting variant | |
    gesv: Solves Ax = b using LU factorization - no pivoting (driver) | |
    getf2: LU panel factorization - no pivoting | |
    getrf: LU factorization - no pivoting | |
    getrs: LU forward and back solves - no pivoting | |
    gerfs: Refine solution - no pivoting | |
  General matrices: RBT + no pivoting LU | Solves \( Ax = b \) using RBT + no pivoting LU factorization for general matrices |
   gesv_rbt: Solves Ax = b using RBT + LU factorization (driver) | |
   gerbt: Apply random butterfly transformation (RBT) | |
   Auxiliary routines | |
    prbt | |
    prbt_mv | |
    prbt_mtv | |
  General matrices: least squares | Solves \( Ax \approx b \) where \( A \) is rectangular |
   gels: Least squares solves Ax = b using QR factorization (driver) | |
   gglse: Least squares solves Ax = b subject to Bx = d (driver) | |
   geqrsv: Solves Ax = b using QR factorization (driver) | |
  Symmetric/Hermitian positive definite: Cholesky | Solves \( Ax = b \) using Cholesky factorization for SPD/HPD matrices |
   posv: Solves Ax = b using Cholesky factorization (driver) | |
   potrf: Cholesky factorization | |
   potrs: Cholesky forward and back solves | |
   potri: Cholesky inverse | |
   Auxiliary routines | |
    potf2: Cholesky panel factorization | |
    lauum: Multiply triangular matrices; used in potri | |
  Symmetric/Hermitian indefinite | Solves \( Ax = b \) using indefinite factorization for Hermitian matrices |
   sy/hesv: Solves Ax = b using symmetric/Hermitian indefinite factorization (driver) | |
   sy/hetrf: symmetric/Hermitian indefinite factorization (Bunch-Kaufman pivoting) | |
   sy/hetrf: symmetric/Hermitian indefinite factorization (Aasen) | |
   Auxiliary routines | |
    lahef: Partial factorization; used by hetrf | |
    laswp_sym: Swap rows/cols | |
   No pivoting variant | |
    sy/hesv: Solves Ax = b using symmetric/Hermitian indefinite factorization - no pivoting (driver) | |
    sy/hetrf: symmetric/Hermitian indefinite factorization - no pivoting | |
    sy/hetrs: symmetric/Hermitian indefinite forward and back solves - no pivoting | |
  Symmetric indefinite | Solves \( Ax = b \) using indefinite factorization for symmetric matrices |
   No pivoting variant | |
    sysv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver) | |
    sytrf: Symmetric indefinite factorization - no pivoting | |
    sytrs: Symmetric indefinite forward and back solves - no pivoting | |
 Orthogonal/unitary factorizations |
|
  QR factorization | Factor \( A = QR \) |
   geqrf: QR factorization | |
   geqp3: QR factorization with column pivoting | |
   gegqr: QR factorization and generate Q | |
   or/unmqr: Multiply by Q from QR factorization | |
   or/ungqr: Generate Q from QR factorization | |
   geqrs: | |
   Auxiliary routines | |
    geqr2: QR panel factorization | |
    laqps: Partial factorization; used by geqp3 | |
    nrm2_adjust: auxiliary for geqp3 | |
    nrm2_check: auxiliary for geqp3 | |
    nrm2_cols: auxiliary for geqp3 | |
    nrm2_row_check_adjust: auxiliary for geqp3 | |
  RQ factorization | Factor \( A = RQ \) |
   gerqf: RQ factorization | |
   ggrqf: generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B | |
   or/unmrq: Multiply by Q from RQ factorization | |
   or/ungrq: Generate Q from RQ factorization | |
  QL factorization | Factor \( A = QL \) |
   geqlf: QL factorization | |
   or/unmql: Multiply by Q from QL factorization | |
   or/ungql: Generate Q from QL factorization | |
  LQ factorization | Factor \( A = LQ \) |
   gelqf: LQ factorization | |
   or/unmlq: Multiply by Q from LQ factorization | |
   or/unglq: Generate Q from LQ factorization | |
 Eigenvalues |
|
  Non-symmetric eigenvalues | Solves \( Ax = \lambda x \) where \( A \) is general |
   geev: Non-symmetric eigenvalues (driver) | |
   gehrd: Hessenberg reduction | |
   or/unghr: Generate Q from Hessenberg reduction | |
   Auxiliary routines | |
    lahr2: Partial factorization; used by gehrd | |
    lahru: Partial factorization; used by gehrd | |
    trevc: Compute eigenvectors; used by geev | |
    latrsd: Triangular solve with modified diagonal; used by trevc | |
    laqtrsd: Quasi-Triangular solve with modified diagonal; used by trevc | |
    laln2: Solve 2x2 system; used by trevc | |
  Symmetric/Hermitian eigenvalues | Solves \( Ax = \lambda x \) where \( A \) is symmetric/Hermitian |
   sy/heevx: Solves using QR iteration (expert) | |
   sy/heevd: Solves using divide-and-conquer (driver) | |
   sy/heevdx: Solves using divide-and-conquer (expert) | |
   sy/heevr: Solves using MRRR (driver) | |
   sy/hetrd: Tridiagonal reduction | |
   or/unmtr: Multiply by Q from tridiagonal reduction | |
   or/ungtr: Generate Q from tridiagonal reduction | |
   Auxiliary routines | |
    latrd: Partial factorization; used by hetrd | |
    stedx: Eigenvalues & vectors of tridiagonal using D&C | |
    laex0: Eigenvalues & vectors of tridiagonal using D&C | |
    laex1: Updated eigensystem after rank-1 update. | |
    laex3: Roots of secular equation. | |
   2-stage variant | |
    he2hb: 1st stage, full to band | |
    sy2sb: 1st stage, full to band | |
    hb2st: 2nd stage, band to tridiagonal | |
    sb2st: 2nd stage, band to tridiagonal | |
    hbtype1cb | |
    hbtype2cb | |
    hbtype3cb | |
  Generalized Symmetric/Hermitian eigenvalues | Solves \( Ax = \lambda B x \), \( ABx = \lambda x \), or \( BAx = \lambda x \) where \( A, B \) are symmetric/Hermitian and \( B \) is positive definite |
   sy/hegvx: Solves using QR iteration (expert) | |
   sy/hegvd: Solves using divide-and-conquer (driver) | |
   sy/hegvdx: Solves using divide-and-conquer (expert) | |
   sy/hegvr: Solves using MRRR (driver) | |
   Auxiliary routines | |
    hegst: Reduce generalized problem to standard problem. | |
 Singular Value Decomposition (SVD) |
|
  gesvd: SVD using QR iteration | |
  gesdd: SVD using divide-and-conquer | |
  gebrd: Bidiagonal reduction | |
  or/unmbr: Multiply by Q or P from bidiagonal reduction | |
  or/ungbr: Generate Q or P from bidiagonal reduction | |
  Auxiliary routines | |
   labrd: Partial factorization; used by gebrd | |
 MAGMA BLAS and Auxiliary |
|
  Math functions (sqrt, etc.), O(1) work | |
   ceil(x/y) and ceil(x/y)y | |
   sqrt | |
   NAN and INF checks | |
   complex number support | In C++, including magma_operators.h defines the usual unary and binary operators for complex numbers: +, +=, -, -=, *, *=, /, /=, ==, != |
  Level 1: vectors operations, O(n) work | Vector operations that perform \( O(n) \) work on \( O(n) \) data |
   asum: Sum vector | \( \sum_i |x_i| \) |
   axpy: Add vectors | \( y = \alpha x + y \) |
   copy: Copy vector | \( y = x \) |
   dot: Dot (inner) product | \( x^T y \) or \( x^H y \) |
   iamax: Find max element | \( \text{argmax}_i\; |x_i| \) |
   iamin: Find min element | \( \text{argmin}_i\; |x_i| \) |
   nrm2: Vector 2 norm | \( ||x||_2 \) |
   rot: Apply Givens rotation | |
   rotg: Generate Givens rotation | |
   rotm: Apply modified Givens rotation | |
   rotmg: Generate modified Givens rotation | |
   scal: Scale vector | \( x = \alpha x \) |
   swap: Swap vectors | \( x <=> y \) |
  Level 2: matrix-vector operations, O(n^2) work | Matrix operations that perform \( O(n^2) \) work on \( O(n^2) \) data |
   geadd: Add matrices | \( B = \alpha A + \beta B \) |
   gemv: General matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   ger: General matrix rank 1 update | \( A = \alpha xy^T + A \) |
   hemv: Hermitian matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   her: Hermitian rank 1 update | \( A = \alpha xx^T + A \) |
   her2: Hermitian rank 2 update | \( A = \alpha xy^T + \alpha yx^T + A \) |
   symv: Symmetric matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   syr: Symmetric rank 1 update | \( A = \alpha xx^T + A \) |
   syr2: Symmetric rank 2 update | \( A = \alpha xy^T + \alpha yx^T + A \) |
   trmv: Triangular matrix-vector multiply | \( x = Ax \) |
   trsv: Triangular matrix-vector solve | \( x = op(A^{-1})\; b \) |
   swapblk: Swap several rows | |
   swapdblk: Swap diagonal blocks | |
   symmetrize: Symmetrize matrix | \( \text{upper}(A) = \text{lower}(A)^T \) or \( \text{lower}(A) = \text{upper}(A)^T \) |
   transpose: Transpose matrix | \( B = A^T \) or \( B = A^H \) |
   lacgv: Conjugate vector | \( x = conj(x) \) |
   lacpy: Copy matrix | \( B = A \) |
   lascl: Scale matrix by scalar | \( A = \alpha A \) |
   lascl_diag: Scale matrix by diagonal | \( A = D A \) |
   lascl_2x2: Scale matrix by 2-by-2 pivot | \( A = D A \) |
   laset: Set matrix to constants | \( A_{ij} = \) diag if \( i=j \); \( A_{ij} = \) offdiag otherwise |
   laset_band: Set band of matrix to constants | \( A_{ij} = \) diag if \( i=j \); \( A_{ij} = \) offdiag otherwise |
  Level 3: matrix-matrix operations, O(n^3) work | Matrix-matrix operations that perform \( O(n^3) \) work on \( O(n^2) \) data |
   gemm: General matrix multiply: C = AB + C | \( C = \alpha \;op(A) \;op(B) + \beta C \) |
   hemm: Hermitian matrix multiply | \( C = \alpha A B + \beta C \) or \( C = \alpha B A + \beta C \) where \( A \) is Hermitian |
   herk: Hermitian rank k update | \( C = \alpha A A^T + \beta C \) where \( C \) is Hermitian |
   her2k: Hermitian rank 2k update | \( C = \alpha A B^T + \alpha B A^T + \beta C \) where \( C \) is Hermitian |
   symm: Symmetric matrix multiply | \( C = \alpha A B + \beta C \) or \( C = \alpha B A + \beta C \) where \( A \) is symmetric |
   syrk: Symmetric rank k update | \( C = \alpha A A^T + \beta C \) where \( C \) is symmetric |
   syr2k: Symmetric rank 2k update | \( C = \alpha A B^T + \alpha B A^T + \beta C \) where \( C \) is symmetric |
   trmm: Triangular matrix multiply | \( B = \alpha \;op(A)\; B \) or \( B = \alpha B \;op(A) \) where \( A \) is triangular |
   trsm: Triangular solve matrix | \( C = op(A)^{-1} B \) or \( C = B \;op(A)^{-1} \) where \( A \) is triangular |
   trtri: Triangular inverse; used in getri, potri | \( A = A^{-1} \) where \( A \) is triangular |
   trtri_diag: Invert diagonal blocks of triangular matrix; used in trsm | |
  Householder reflectors | |
   larfy: Apply Householder reflector to symmetric/Hermitian matrix | |
   larfg: Generate Householder reflector | |
   larfb: Apply block of Householder reflectors (Level 3) | |
  Precision conversion | |
   _lag2_: Converts general matrix between single and double | |
   _lat2_: Converts triangular matrix between single and double | |
  Matrix norms | |
   lange: General matrix norm | 1, Frobenius, or Infinity norm; or largest element |
   lansy/he: Symmetric/Hermitian matrix norm | 1, Frobenius, or Infinity norm; or largest element |
Batched | ============================================================ |
 Linear system solvers | Solves \( Ax = b \) |
  General matrices: LU | Solves \( Ax = b \) using LU factorization for general matrices |
   gesv: Solves Ax = b using LU factorization (driver) | |
   getrf: LU factorization | |
   getrs: LU forward and back solves | |
   getri: LU inverse | |
   gerfs: Refine solution | |
   Auxiliary routines | |
    getf2: LU panel factorization | |
    laswp: Swap rows | |
   No pivoting variant | |
    gesv: Solves Ax = b using LU factorization - no pivoting (driver) | |
    getf2: LU panel factorization - no pivoting | |
    getrf: LU factorization - no pivoting | |
    getrs: LU forward and back solves - no pivoting | |
  General matrices: RBT + no pivoting LU | Solves \( Ax = b \) using RBT + no pivoting LU factorization for general matrices |
   gesv_rbt: Solves Ax = b using RBT + LU factorization (driver) | |
   Auxiliary routines | |
    gerbt: Apply random butterfly transformation (RBT) | |
    prbt | |
    prbt_mv | |
    prbt_mtv | |
  General matrices: least squares | Solves \( Ax \approx b \) where \( A \) is rectangular |
   gels: Least squares solves Ax = b using QR factorization (driver) | |
  Symmetric/Hermitian positive definite: Cholesky | Solves \( Ax = b \) using Cholesky factorization for SPD/HPD matrices |
   posv: Solves Ax = b using Cholesky factorization (driver) | |
   potrf: Cholesky factorization | |
   potrs: Cholesky forward and back solves | |
   potri: Cholesky inverse | |
   porfs: Refine solution | |
   Auxiliary routines | |
    potf2: Cholesky panel factorization | |
    lauum: Multiply triangular matrices; used in potri | |
  Hermitian indefinite | Solves \( Ax = b \) using indefinite factorization for Hermitian matrices |
   hesv: Solves Ax = b using symmetric indefinite factorization (driver) | |
   hesv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver) | |
   hetrf: Symmetric indefinite factorization | |
   hetrs: Symmetric indefinite forward and back solves | |
   hetri: Symmetric indefinite inverse | |
   herfs: Refine solution | |
   Auxiliary routines | |
    lahef: Partial factorization; used by hetrf | |
  Symmetric indefinite | Solves \( Ax = b \) using indefinite factorization for symmetric matrices |
   sysv: Solves Ax = b using symmetric indefinite factorization (driver) | |
   sysv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver) | |
   sytrf: Symmetric indefinite factorization | |
   sytrs: Symmetric indefinite forward and back solves | |
   sytri: Symmetric indefinite inverse | |
   syrfs: Refine solution | |
   Auxiliary routines | |
    lasyf: Partial factorization; used by sytrf | |
 Orthogonal/unitary factorizations |
|
  QR factorization | Factor \( A = QR \) |
   geqrf: QR factorization | |
   or/unmqr: Multiply by Q from QR factorization | |
   or/ungqr: Generate Q from QR factorization | |
   Auxiliary routines | |
    geqr2: QR panel factorization | |
    copy V to R | |
  RQ factorization | Factor \( A = RQ \) |
   gerqf: RQ factorization | |
   or/unmrq: Multiply by Q from RQ factorization | |
   or/ungrq: Generate Q from RQ factorization | |
  QL factorization | Factor \( A = QL \) |
   geqlf: QL factorization | |
   or/unmql: Multiply by Q from QL factorization | |
   or/ungql: Generate Q from QL factorization | |
  LQ factorization | Factor \( A = LQ \) |
   gelqf: LQ factorization | |
   or/unmlq: Multiply by Q from LQ factorization | |
   or/unglq: Generate Q from LQ factorization | |
 MAGMA BLAS and Auxiliary |
|
  Level 1: vectors operations, O(n) work | Vector operations that perform \( O(n) \) work on \( O(n) \) data |
   asum: Sum vector | \( \sum_i |x_i| \) |
   axpy: Add vectors | \( y = \alpha x + y \) |
   copy: Copy vector | \( y = x \) |
   dot: Dot (inner) product | \( x^T y \) or \( x^H y \) |
   iamax: Find max element | \( \text{argmax}_i\; |x_i| \) |
   iamin: Find min element | \( \text{argmin}_i\; |x_i| \) |
   nrm2: Vector 2 norm | \( ||x||_2 \) |
   rot: Apply Givens rotation | |
   rotg: Generate Givens rotation | |
   rotm: Apply modified Givens rotation | |
   rotmg: Generate modified Givens rotation | |
   scal: Scale vector | \( x = \alpha x \) |
   swap: Swap vectors | \( x <=> y \) |
  Level 2: matrix-vector operations, O(n^2) work | Matrix operations that perform \( O(n^2) \) work on \( O(n^2) \) data |
   geadd: Add matrices | \( B = \alpha A + \beta B \) |
   gemv: General matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   ger: General matrix rank 1 update | \( A = \alpha xy^T + A \) |
   hemv: Hermitian matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   her: Hermitian rank 1 update | \( A = \alpha xx^T + A \) |
   her2: Hermitian rank 2 update | \( A = \alpha xy^T + \alpha yx^T + A \) |
   symv: Symmetric matrix-vector multiply | \( y = \alpha Ax + \beta y \) |
   syr: Symmetric rank 1 update | \( A = \alpha xx^T + A \) |
   syr2: Symmetric rank 2 update | \( A = \alpha xy^T + \alpha yx^T + A \) |
   trmv: Triangular matrix-vector multiply | \( x = Ax \) |
   trsv: Triangular matrix-vector solve | \( x = op(A^{-1})\; b \) |
   swapblk: Swap several rows | |
   swapdblk: Swap diagonal blocks | |
   symmetrize: Symmetrize matrix | \( \text{upper}(A) = \text{lower}(A)^T \) or \( \text{lower}(A) = \text{upper}(A)^T \) |
   transpose: Transpose matrix | \( B = A^T \) or \( B = A^H \) |
   lacgv: Conjugate vector | \( x = conj(x) \) |
   lacpy: Copy matrix | \( B = A \) |
   lascl: Scale matrix by scalar | \( A = \alpha A \) |
   lascl2: Scale matrix by diagonal | \( A = D A \) |
   laset: Set matrix to constants | \( A_{ij} = \) diag if \( i=j \); \( A_{ij} = \) offdiag otherwise |
  Level 3: matrix-matrix operations, O(n^3) work | Matrix-matrix operations that perform \( O(n^3) \) work on \( O(n^2) \) data |
   gemm: General matrix multiply: C = AB + C | \( C = \alpha \;op(A) \;op(B) + \beta C \) |
   hemm: Hermitian matrix multiply | \( C = \alpha A B + \beta C \) or \( C = \alpha B A + \beta C \) where \( A \) is Hermitian |
   herk: Hermitian rank k update | \( C = \alpha A A^T + \beta C \) where \( C \) is Hermitian |
   her2k: Hermitian rank 2k update | \( C = \alpha A B^T + \alpha B A^T + \beta C \) where \( C \) is Hermitian |
   symm: Symmetric matrix multiply | \( C = \alpha A B + \beta C \) or \( C = \alpha B A + \beta C \) where \( A \) is symmetric |
   syrk: Symmetric rank k update | \( C = \alpha A A^T + \beta C \) where \( C \) is symmetric |
   syr2k: Symmetric rank 2k update | \( C = \alpha A B^T + \alpha B A^T + \beta C \) where \( C \) is symmetric |
   trmm: Triangular matrix multiply | \( B = \alpha \;op(A)\; B \) or \( B = \alpha B \;op(A) \) where \( A \) is triangular |
   trsm: Triangular solve matrix | \( C = op(A)^{-1} B \) or \( C = B \;op(A)^{-1} \) where \( A \) is triangular |
   trtri: Triangular inverse; used in getri, potri | \( A = A^{-1} \) where \( A \) is triangular |
   trtri_diag: Invert diagonal blocks of triangular matrix; used in trsm | |
  Householder reflectors | |
   larf: Apply Householder reflector to general matrix | |
   larfy: Apply Householder reflector to symmetric/Hermitian matrix | |
   larfg: Generate Householder reflector | |
   larfb: Apply block of Householder reflectors (Level 3) | |
   larft: Generate T matrix for block of Householder reflectors | |
  Precision conversion | |
   _lag2_: Converts general matrix between single and double | |
   _lat2_: Converts triangular matrix between single and double | |
  Matrix norms | |
   lange: General matrix norm | 1, Frobenius, or Infinity norm; or largest element |
   lansy/he: Symmetric/Hermitian matrix norm | 1, Frobenius, or Infinity norm; or largest element |
   lantr: Triangular matrix norm | 1, Frobenius, or Infinity norm; or largest element |
Sparse | ============================================================ |
 Sparse linear systems | Solve \( Ax = b \) |
  General matrices | Solve \( Ax = b \), for general \( A \) |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
  Symmetric/Hermitian positive definite | Solve \( Ax = b \), for symmetric/Hermitian positive definite (SPD) \( A \) |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
 Sparse eigenvalues |
|
  Symmetric/Hermitian eigenvalues | Solve \( Ax = \lambda x \) for symmetric/Hermitian \( A \) |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
 Sparse preconditioners |
|
  General matrix preconditioner | Preconditioners for non-symmetric \( A \) |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
  Symmetric/Hermitian preconditioner | Preconditioners for symmetric/Hermitian \( A \) |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
 GPU kernels for sparse LA |
|
  GPU kernels for non-symmetric sparse LA | |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
  GPU kernels for symmetric/Hermitian sparse LA | |
   single precision | |
   double precision | |
   single-complex precision | |
   double-complex precision | |
 Sparse BLAS |
|
  single precision | |
  double precision | |
  single-complex precision | |
  double-complex precision | |
 Sparse auxiliary |
|
  single precision | |
  double precision | |
  single-complex precision | |
  double-complex precision | |
 Sparse unfiled |
|
  single precision | |
  double precision | |
  single-complex precision | |
  double-complex precision | |