Zebra ***** *zebra* is an IP routing manager. It provides kernel routing table updates, interface lookups, and redistribution of routes between different routing protocols. Invoking zebra ============== Besides the common invocation options (Common Invocation Options), the *zebra* specific invocation options are listed below. -b, --batch Runs in batch mode. *zebra* parses configuration file and terminates immediately. -K TIME, --graceful_restart TIME If this option is specified, the graceful restart time is TIME seconds. Zebra, when started, will read in routes. Those routes that Zebra identifies that it was the originator of will be swept in TIME seconds. If no time is specified then we will sweep those routes immediately. -r, --retain When program terminates, do not flush routes installed by *zebra* from the kernel. -e X, --ecmp X Run zebra with a limited ecmp ability compared to what it is compiled to. If you are running zebra on hardware limited functionality you can force zebra to limit the maximum ecmp allowed to X. This number is bounded by what you compiled FRR with as the maximum number. -n, --vrfwnetns When *Zebra* starts with this option, the VRF backend is based on Linux network namespaces. That implies that all network namespaces discovered by ZEBRA will create an associated VRF. The other daemons will operate on the VRF VRF defined by *Zebra*, as usual. See also: Virtual Routing and Forwarding -o, --vrfdefaultname When *Zebra* starts with this option, the default VRF name is changed to the parameter. See also: Virtual Routing and Forwarding -z , --socket If this option is supplied on the cli, the path to the zebra control socket(zapi), is used. This option overrides a -N option if handed to it on the cli. --v6-rr-semantics The linux kernel is receiving the ability to use the same route replacement semantics for v6 that v4 uses. If you are using a kernel that supports this functionality then run *Zebra* with this option and we will use Route Replace Semantics instead of delete than add. Configuration Addresses behaviour ================================= At startup, *Zebra* will first discover the underlying networking objects from the operating system. This includes interfaces, addresses of interfaces, static routes, etc. Then, it will read the configuration file, including its own interface addresses, static routes, etc. All this information comprises the operational context from *Zebra*. But configuration context from *Zebra* will remain the same as the one from "zebra.conf" config file. As an example, executing the following "show running-config" will reflect what was in "zebra.conf". In a similar way, networking objects that are configured outside of the *Zebra* like *iproute2* will not impact the configuration context from *Zebra*. This behaviour permits you to continue saving your own config file, and decide what is really to be pushed on the config file, and what is dependent on the underlying system. Note that inversely, from *Zebra*, you will not be able to delete networking objects that were previously configured outside of *Zebra*. Interface Commands ================== Standard Commands ----------------- interface IFNAME interface IFNAME vrf VRF shutdown no shutdown Up or down the current interface. ip address ADDRESS/PREFIX ipv6 address ADDRESS/PREFIX no ip address ADDRESS/PREFIX no ipv6 address ADDRESS/PREFIX Set the IPv4 or IPv6 address/prefix for the interface. ip address LOCAL-ADDR peer PEER-ADDR/PREFIX no ip address LOCAL-ADDR peer PEER-ADDR/PREFIX Configure an IPv4 Point-to-Point address on the interface. (The concept of PtP addressing does not exist for IPv6.) *local-addr* has no subnet mask since the local side in PtP addressing is always a single (/32) address. *peer-addr/prefix* can be an arbitrary subnet behind the other end of the link (or even on the link in Point-to-Multipoint setups), though generally /32s are used. description DESCRIPTION ... Set description for the interface. multicast no multicast Enable or disables multicast flag for the interface. bandwidth (1-10000000) no bandwidth (1-10000000) Set bandwidth value of the interface in kilobits/sec. This is for calculating OSPF cost. This command does not affect the actual device configuration. link-detect no link-detect Enable/disable link-detect on platforms which support this. Currently only Linux and Solaris, and only where network interface drivers support reporting link-state via the "IFF_RUNNING" flag. In FRR, link-detect is on by default. Link Parameters Commands ------------------------ Note: At this time, FRR offers partial support for some of the routing protocol extensions that can be used with MPLS-TE. FRR does not support a complete RSVP-TE solution currently. link-params no link-param Enter into the link parameters sub node. At least 'enable' must be set to activate the link parameters, and consequently routing information that could be used as part of Traffic Engineering on this interface. MPLS-TE must be enable at the OSPF (Traffic Engineering) or ISIS (Traffic Engineering) router level in complement to this. Disable link parameters for this interface. Under link parameter statement, the following commands set the different TE values: link-params [enable] Enable link parameters for this interface. link-params [metric (0-4294967295)] link-params max-bw BANDWIDTH link-params max-rsv-bw BANDWIDTH link-params unrsv-bw (0-7) BANDWIDTH link-params admin-grp BANDWIDTH These commands specifies the Traffic Engineering parameters of the interface in conformity to RFC3630 (OSPF) or RFC5305 (ISIS). There are respectively the TE Metric (different from the OSPF or ISIS metric), Maximum Bandwidth (interface speed by default), Maximum Reservable Bandwidth, Unreserved Bandwidth for each 0-7 priority and Admin Group (ISIS) or Resource Class/Color (OSPF). Note that BANDIWDTH is specified in IEEE floating point format and express in Bytes/second. link-param delay (0-16777215) [min (0-16777215) | max (0-16777215)] link-param delay-variation (0-16777215) link-param packet-loss PERCENTAGE link-param res-bw BANDWIDTH link-param ava-bw BANDWIDTH link-param use-bw BANDWIDTH These command specifies additional Traffic Engineering parameters of the interface in conformity to draft-ietf-ospf-te-metrics- extension-05.txt and draft-ietf-isis-te-metrics-extension-03.txt. There are respectively the delay, jitter, loss, available bandwidth, reservable bandwidth and utilized bandwidth. Note that BANDWIDTH is specified in IEEE floating point format and express in Bytes/second. Delays and delay variation are express in micro-second (µs). Loss is specified in PERCENTAGE ranging from 0 to 50.331642% by step of 0.000003. link-param neighbor as (0-65535) link-param no neighbor Specifies the remote ASBR IP address and Autonomous System (AS) number for InterASv2 link in OSPF (RFC5392). Note that this option is not yet supported for ISIS (RFC5316). ip nht resolve-via-default Allows nexthop tracking to resolve via the default route. This is useful when e.g. you want to allow BGP to peer across the default route. Virtual Routing and Forwarding ============================== FRR supports VRF (Virtual Routing and Forwarding). VRF is a way to separate networking contexts on the same machine. Those networking contexts are associated with separate interfaces, thus making it possible to associate one interface with a specific VRF. VRF can be used, for example, when instantiating per enterprise networking services, without having to instantiate the physical host machine or the routing management daemons for each enterprise. As a result, interfaces are separate for each set of VRF, and routing daemons can have their own context for each VRF. This conceptual view introduces the *Default VRF* case. If the user does not configure any specific VRF, then by default, FRR uses the *Default VRF*. Configuring VRF networking contexts can be done in various ways on FRR. The VRF interfaces can be configured by entering in interface configuration mode "interface IFNAME vrf VRF". A VRF backend mode is chosen when running *Zebra*. If no option is chosen, then the *Linux VRF* implementation as references in https://www.kernel.org/doc/Documentation/networking/vrf.txt will be mapped over the *Zebra* VRF. The routing table associated to that VRF is a Linux table identifier located in the same *Linux network namespace* where *Zebra* started. If the "-n" option is chosen, then the *Linux network namespace* will be mapped over the *Zebra* VRF. That implies that *Zebra* is able to configure several *Linux network namespaces*. The routing table associated to that VRF is the whole routing tables located in that namespace. For instance, this mode matches OpenStack Network Namespaces. It matches also OpenFastPath. The default behavior remains Linux VRF which is supported by the Linux kernel community, see https://www.kernel.org/doc/Documentation/networking/vrf.txt. Because of that difference, there are some subtle differences when running some commands in relationship to VRF. Here is an extract of some of those commands: vrf VRF This command is available on configuration mode. By default, above command permits accessing the VRF configuration mode. This mode is available for both VRFs. It is to be noted that *Zebra* does not create Linux VRF. The network administrator can however decide to provision this command in configuration file to provide more clarity about the intended configuration. netns NAMESPACE This command is based on VRF configuration mode. This command is available when *Zebra* is run in "-n" mode. This command reflects which *Linux network namespace* is to be mapped with *Zebra* VRF. It is to be noted that *Zebra* creates and detects added/suppressed VRFs from the Linux environment (in fact, those managed with iproute2). The network administrator can however decide to provision this command in configuration file to provide more clarity about the intended configuration. show ip route vrf VRF The show command permits dumping the routing table associated to the VRF. If *Zebra* is launched with default settings, this will be the "TABLENO" of the VRF configured on the kernel, thanks to information provided in https://www.kernel.org/doc/Documentation/networking/vrf.txt. If *Zebra* is launched with "-n" option, this will be the default routing table of the *Linux network namespace* "VRF". show ip route vrf VRF table TABLENO The show command is only available with "-n" option. This command will dump the routing table "TABLENO" of the *Linux network namespace* "VRF". show ip route vrf VRF tables This command will dump the routing tables within the vrf scope. If *vrf all* is executed, all routing tables will be dumped. By using the "-n" option, the *Linux network namespace* will be mapped over the *Zebra* VRF. One nice feature that is possible by handling *Linux network namespace* is the ability to name default VRF. At startup, *Zebra* discovers the available *Linux network namespace* by parsing folder */var/run/netns*. Each file stands for a *Linux network namespace*, but not all *Linux network namespaces* are available under that folder. This is the case for default VRF. It is possible to name the default VRF, by creating a file, by executing following commands. touch /var/run/netns/vrf0 mount --bind /proc/self/ns/net /var/run/netns/vrf0 Above command illustrates what happens when the default VRF is visible under *var/run/netns/*. Here, the default VRF file is *vrf0*. At startup, FRR detects the presence of that file. It detects that the file statistics information matches the same file statistics information as */proc/self/ns/net* ( through stat() function). As statistics information matches, then *vrf0* stands for the new default namespace name. Consequently, the VRF naming *Default* will be overridden by the new discovered namespace name *vrf0*. For those who don't use VRF backend with *Linux network namespace*, it is possible to statically configure and recompile FRR. It is possible to choose an alternate name for default VRF. Then, the default VRF naming will automatically be updated with the new name. To illustrate, if you want to recompile with *global* value, use the following command: ./configure --with-defaultvrfname=global MPLS Commands ============= You can configure static mpls entries in zebra. Basically, handling MPLS consists of popping, swapping or pushing labels to IP packets. MPLS Acronyms ------------- LSR (Labeled Switch Router) Networking devices handling labels used to forward traffic between and through them. LER (Labeled Edge Router) A Labeled edge router is located at the edge of an MPLS network, generally between an IP network and an MPLS network. MPLS Push Action ---------------- The push action is generally used for LER devices, which want to encapsulate all traffic for a wished destination into an MPLS label. This action is stored in routing entry, and can be configured like a route: [no] ip route NETWORK MASK GATEWAY|INTERFACE label LABEL NETWORK and MASK stand for the IP prefix entry to be added as static route entry. GATEWAY is the gateway IP address to reach, in order to reach the prefix. INTERFACE is the interface behind which the prefix is located. LABEL is the MPLS label to use to reach the prefix abovementioned. You can check that the static entry is stored in the zebra RIB database, by looking at the presence of the entry. zebra(configure)# ip route 1.1.1.1/32 10.0.1.1 label 777 zebra# show ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, > - selected route, * - FIB route S>* 1.1.1.1/32 [1/0] via 10.0.1.1, r2-eth0, label 777, 00:39:42 MPLS Swap and Pop Action ------------------------ The swap action is generally used for LSR devices, which swap a packet with a label, with an other label. The Pop action is used on LER devices, at the termination of the MPLS traffic; this is used to remove MPLS header. [no] mpls lsp INCOMING_LABEL GATEWAY OUTGOING_LABEL|explicit-null|implicit-null INCOMING_LABEL and OUTGOING_LABEL are MPLS labels with values ranging from 16 to 1048575. GATEWAY is the gateway IP address where to send MPLS packet. The outgoing label can either be a value or have an explicit-null label header. This specific header can be read by IP devices. The incoming label can also be removed; in that case the implicit-null keyword is used, and the outgoing packet emitted is an IP packet without MPLS header. You can check that the MPLS actions are stored in the zebra MPLS table, by looking at the presence of the entry. show mpls table zebra(configure)# mpls lsp 18 10.125.0.2 implicit-null zebra(configure)# mpls lsp 19 10.125.0.2 20 zebra(configure)# mpls lsp 21 10.125.0.2 explicit-null zebra# show mpls table Inbound Outbound Label Type Nexthop Label -------- ------- --------------- -------- 18 Static 10.125.0.2 implicit-null 19 Static 10.125.0.2 20 21 Static 10.125.0.2 IPv4 Explicit Null Multicast RIB Commands ====================== The Multicast RIB provides a separate table of unicast destinations which is used for Multicast Reverse Path Forwarding decisions. It is used with a multicast source's IP address, hence contains not multicast group addresses but unicast addresses. This table is fully separate from the default unicast table. However, RPF lookup can include the unicast table. WARNING: RPF lookup results are non-responsive in this version of FRR, i.e. multicast routing does not actively react to changes in underlying unicast topology! ip multicast rpf-lookup-mode MODE no ip multicast rpf-lookup-mode [MODE] MODE sets the method used to perform RPF lookups. Supported modes: urib-only Performs the lookup on the Unicast RIB. The Multicast RIB is never used. mrib-only Performs the lookup on the Multicast RIB. The Unicast RIB is never used. mrib-then-urib Tries to perform the lookup on the Multicast RIB. If any route is found, that route is used. Otherwise, the Unicast RIB is tried. lower-distance Performs a lookup on the Multicast RIB and Unicast RIB each. The result with the lower administrative distance is used; if they're equal, the Multicast RIB takes precedence. longer-prefix Performs a lookup on the Multicast RIB and Unicast RIB each. The result with the longer prefix length is used; if they're equal, the Multicast RIB takes precedence. The *mrib-then-urib* setting is the default behavior if nothing is configured. If this is the desired behavior, it should be explicitly configured to make the configuration immune against possible changes in what the default behavior is. Warning: Unreachable routes do not receive special treatment and do not cause fallback to a second lookup. show ip rpf ADDR Performs a Multicast RPF lookup, as configured with "ip multicast rpf-lookup-mode MODE". ADDR specifies the multicast source address to look up. > show ip rpf 192.0.2.1 Routing entry for 192.0.2.0/24 using Unicast RIB Known via "kernel", distance 0, metric 0, best * 198.51.100.1, via eth0 Indicates that a multicast source lookup for 192.0.2.1 would use an Unicast RIB entry for 192.0.2.0/24 with a gateway of 198.51.100.1. show ip rpf Prints the entire Multicast RIB. Note that this is independent of the configured RPF lookup mode, the Multicast RIB may be printed yet not used at all. ip mroute PREFIX NEXTHOP [DISTANCE] no ip mroute PREFIX NEXTHOP [DISTANCE] Adds a static route entry to the Multicast RIB. This performs exactly as the "ip route" command, except that it inserts the route in the Multicast RIB instead of the Unicast RIB. zebra Route Filtering ===================== Zebra supports *prefix-list* s and Route Maps s to match routes received from other FRR components. The permit/deny facilities provided by these commands can be used to filter which routes zebra will install in the kernel. ip protocol PROTOCOL route-map ROUTEMAP Apply a route-map filter to routes for the specified protocol. PROTOCOL can be **any** or one of * system, * kernel, * connected, * static, * rip, * ripng, * ospf, * ospf6, * isis, * bgp, * hsls. set src ADDRESS Within a route-map, set the preferred source address for matching routes when installing in the kernel. The following creates a prefix-list that matches all addresses, a route-map that sets the preferred source address, and applies the route-map to all *rip* routes. ip prefix-list ANY permit 0.0.0.0/0 le 32 route-map RM1 permit 10 match ip address prefix-list ANY set src 10.0.0.1 ip protocol rip route-map RM1 zebra FIB push interface ======================== Zebra supports a 'FIB push' interface that allows an external component to learn the forwarding information computed by the FRR routing suite. This is a loadable module that needs to be enabled at startup as described in Loadable Module Support. In FRR, the Routing Information Base (RIB) resides inside zebra. Routing protocols communicate their best routes to zebra, and zebra computes the best route across protocols for each prefix. This latter information makes up the Forwarding Information Base (FIB). Zebra feeds the FIB to the kernel, which allows the IP stack in the kernel to forward packets according to the routes computed by FRR. The kernel FIB is updated in an OS-specific way. For example, the *Netlink* interface is used on Linux, and route sockets are used on FreeBSD. The FIB push interface aims to provide a cross-platform mechanism to support scenarios where the router has a forwarding path that is distinct from the kernel, commonly a hardware-based fast path. In these cases, the FIB needs to be maintained reliably in the fast path as well. We refer to the component that programs the forwarding plane (directly or indirectly) as the Forwarding Plane Manager or FPM. The FIB push interface comprises of a TCP connection between zebra and the FPM. The connection is initiated by zebra -- that is, the FPM acts as the TCP server. The relevant zebra code kicks in when zebra is configured with the "-- enable-fpm" flag. Zebra periodically attempts to connect to the well- known FPM port. Once the connection is up, zebra starts sending messages containing routes over the socket to the FPM. Zebra sends a complete copy of the forwarding table to the FPM, including routes that it may have picked up from the kernel. The existing interaction of zebra with the kernel remains unchanged -- that is, the kernel continues to receive FIB updates as before. The encapsulation header for the messages exchanged with the FPM is defined by the file "fpm/fpm.h" in the frr tree. The routes themselves are encoded in Netlink or protobuf format, with Netlink being the default. Protobuf is one of a number of new serialization formats wherein the message schema is expressed in a purpose-built language. Code for encoding/decoding to/from the wire format is generated from the schema. Protobuf messages can be extended easily while maintaining backward-compatibility with older code. Protobuf has the following advantages over Netlink: * Code for serialization/deserialization is generated automatically. This reduces the likelihood of bugs, allows third-party programs to be integrated quickly, and makes it easy to add fields. * The message format is not tied to an OS (Linux), and can be evolved independently. As mentioned before, zebra encodes routes sent to the FPM in Netlink format by default. The format can be controlled via the FPM module's load-time option to zebra, which currently takes the values *Netlink* and *protobuf*. The zebra FPM interface uses replace semantics. That is, if a 'route add' message for a prefix is followed by another 'route add' message, the information in the second message is complete by itself, and replaces the information sent in the first message. If the connection to the FPM goes down for some reason, zebra sends the FPM a complete copy of the forwarding table(s) when it reconnects. Dataplane Commands ================== The zebra dataplane subsystem provides a framework for FIB programming. Zebra uses the dataplane to program the local kernel as it makes changes to objects such as IP routes, MPLS LSPs, and interface IP addresses. The dataplane runs in its own pthread, in order to off-load work from the main zebra pthread. show zebra dplane [detailed] Display statistics about the updates and events passing through the dataplane subsystem. show zebra dplane providers Display information about the running dataplane plugins that are providing updates to a FIB. By default, the local kernel plugin is present. zebra dplane limit [NUMBER] Configure the limit on the number of pending updates that are waiting to be processed by the dataplane pthread. zebra Terminal Mode Commands ============================ show ip route Display current routes which zebra holds in its database. Router# show ip route Codes: K - kernel route, C - connected, S - static, R - RIP, B - BGP * - FIB route. K* 0.0.0.0/0 203.181.89.241 S 0.0.0.0/0 203.181.89.1 C* 127.0.0.0/8 lo C* 203.181.89.240/28 eth0 show ipv6 route show interface show ip prefix-list [NAME] show route-map [NAME] show ip protocol show ipforward Display whether the host's IP forwarding function is enabled or not. Almost any UNIX kernel can be configured with IP forwarding disabled. If so, the box can't work as a router. show ipv6forward Display whether the host's IP v6 forwarding is enabled or not. show zebra Display various statistics related to the installation and deletion of routes, neighbor updates, and LSP's into the kernel. show zebra client [summary] Display statistics about clients that are connected to zebra. This is useful for debugging and seeing how much data is being passed between zebra and it's clients. If the summary form of the command is choosen a table is displayed with shortened information. show zebra router table summary Display summarized data about tables created, their afi/safi/tableid and how many routes each table contains. Please note this is the total number of route nodes in the table. Which will be higher than the actual number of routes that are held. show zebra fpm stats Display statistics related to the zebra code that interacts with the optional Forwarding Plane Manager (FPM) component. clear zebra fpm stats Reset statistics related to the zebra code that interacts with the optional Forwarding Plane Manager (FPM) component.