
RegTIRVIS : Thermo-optical image

registration

Mohamed Ali CHEBBI

13 octobre 2017

1 Introduction

The present paper explains the steps followed to coregister Thermal to optical images
using the Elise Library of MicMac. The main procedures are highlighted and their func-
tionalities explained. It will allow the programmer to understand the pieces of code.

2 Class diagram

The following digram highlights the di�erent classes that are de�ned to ful�ll the
registration task.

Figure 1 � Non exhaustive class diagram

1

3 Explaining the di�erent classes and functionalities

3.1 RegTIRVIS_main

This is the main function that enbody the whole registration process. It is not explai-
ned in the class diagram because there a lot of functions and procedures. Therefore, it
is handy to discuss them in detail. The overall process is based on searching algorithms
that use KD tree structures.

> void Resizeim(Im2D < Type, TyBase > im, Im2D < Type, TyBase > Out,
P t2drNewsize) : This procedure is used to resize an image using a certain inter-
polation method. The need to resize images is dictated by the multiscale analysis
during MSD keypoints computation (Image pyramid)

> void EnrichKps(vector < KeyPoint > Kpsfrom,ArbreKD ∗ Tree,
cElHomographie &Homog, int NbIter) : As explained in the internship report,
the algorithm of keypoints enriching is encaplsulated in this procedure. The lat-
ter takes the initial keypoints with the matching-based homography to enrich tie
points using this a priori (Initial homography). This helps delocalize the homogra-
phy so that it will be a good predictor for dyke registration.

> void wallis(Im2D < U_INT1, INT > & image, Im2D < U_INT1, INT >
& WallEqIm) : The Wallis �lter algorithm is implemented using this procedure.
It takes as entry an image and gives an output image with the algorithm applied.

> void Migrate2Lab2wallis(Tiff_Im & image, Im2D < U_INT1, INT > &

Output) : Prior to the description process, we perform RGB to lab colorimetric
transition and apply the wallis �lter. The whole process is managed using this
procedure which calls a structure named RGB2Lab_b and the wallis procedure.

> void StoreKps(vector < KeyPoint > KPs, string file) : Sicne the computa-
tion time is high, we rather store computed keypoints so that we won't do that
again.

> vector < Pt2dr > NewSetKpAfterHomog(std :: vector < KeyPoint > Kps,
cElHomographieH) : Applies a homography H to a set of Keypoints.

> vector < Pt2dr > NewSetKpAfterHomog(std :: vector < SiftPoint > Kps,
cElHomographieH) : The same but for SiftPoint (s).

> vector < KeyPoint > FromSiftP2KeyP (vector < SiftPoint > Kps) : Allows
transitioning from SiftPoint class to KeyPoint class. It is applied to a whole set of
SiftPoint (s).

> void Readkeypoints(std :: vector < KeyPoint > & Kps, string file) : Reads
a set of KeyPoint (s) stored in a certain �le.

> string WhichThermalImage(string V isualIm, vector < string > ThermalSet) :
Identi�es a thermal having as entries its homologous Visual or otpical image and
the whole set of thermal images.

> string WhichV isualImage(string ThermalIm, vector < string > V isualSet) :
Identi�es an optical image having as entries its homologous thermal image and the
whole set of optical images.

> void ParseHomol(string MasterImage,
vector < cCpleString > ImCpls, vector < string > &ListHomol) : Having a

2

set of overlpping images computed using the MicMac command GrapheHom, we
can determine for each thermal the set of overlpping thermal images without an a
priori on the orientation. Therefore, this procedure takes as entry a thermal image,
the set of overlapping couples (GrapheHom), and gives a list of image names that
overlap the entered thermal image.

struct PtAndIdx
{

Pt2dr Pt ;
int CaptureIndex ;

} ;

This structure encapsulates a Pt2dr point (2D) and its index in a vector of points.
It hemps us �nd the corresponding KeyPoint.

The latter overview is not exhaustive. Now, we focus on the thermal orientation problem.
We use a Test set to compute the homography predictor. Then, we use the homography
to infer matches (thermal + thermo-optical).
Taking the TestSet :

+ We compute MSD KeyPoint (s).

+ We move to the Lab and Wallis space.

+ We compute the Sift Descriptor for each KeyPoint==> DigeoFile ther-
mal + DigeoFile optical.

+ We match KeyPoint (s) using the available command : Ann

l i s t <s t r i ng> cmd ;
s t r i n g aCmd=MM3DStr + " Ann "+ std : : s t r i n g ("−r a t i o 0 .9 ") +

std : : s t r i n g (" DigeoTH . txt ") + std : : s t r i n g (" DigeoV . txt ") +
std : : s t r i n g (" Matches . txt ") ;

cmd . push_back (aCmd) ;
cEl_GPAO : : DoComInParal (cmd) ;

+ We compute an initial robust homography using the matched interest
points.

bool Exis t= ELISE_fp : : e x i s t_ f i l e ("Matches . txt ") ;
i f (Ex i s t)

{
HomologousPts= ElPackHomologue : : FromFile ("Matches . txt ") ;

}
cElComposHomographie Ix (0 , 0 , 0) ;
cElComposHomographie Iy (0 , 0 , 0) ;
cElComposHomographie I z (0 , 0 , 0) ;
cElHomographie H2estimate (Ix , Iy , I z) ;

double anEcart , aQual i ty ;
bool Ok;
Hout=H2estimate . RobustIn i t (anEcart ,&aQuality , HomologousPts ,Ok, 5 0 , 8 0 . 0 , 2 0 0 0) ;
Hout . Show () ;
s td : : cout<<" eca r t "<<anEcart<<endl ;
s td : : cout<<" qua l i t y "<<aQuality<<endl ;

3

std : : cout<<Ok<<endl ;

+ We enrich keypoints having the intial a priori (Homography) and com-
pute the �nal homography predictor.

// Construct a Kd t r e e f o r the d e s t i n a t i on keypo in t s (s l a v e image : o p t i c a l)

ArbreKD ∗ ArbreV= new ArbreKD(Pt_of_Point , box , KpsV . s i z e () , 1 . 0) ;
for (u int i =0; i<KpsV . s i z e () ; i++)
{

ArbreV−>i n s e r t (pair<int , Pt2dr>(i , Pt2dr (KpsV . at (i) . getPoint () . x ,
KpsV . at (i) . getPoint () . y))) ;

}
// Ca l l Enrich Keypoints to use the homography as p r e d i c t o r

EnrichKps (KpsTh , ArbreV , Hout , 5) ;

Now that the homography predictor is computed using a couple of thermal and op-
tical image (From the tractor dataset : TestSet), we can move forward to compute the
Dyke thermal set orientation and the 3D similarity that link both optical and thermal
coordinate systems.

==> Dataset : Dyke
The overall process is explained hereafter :
+ First of all, we need to check that each thermal image has its corres-

ponding optical one. The whole set is therefore coherent.
Thermal images should have the pre�x TIR
Optical images should have the pre�x VIS

+ An a priori on the thermal set visibility or overlapping is acquired using
the optical set orientation ==> GrapheHom

//Compute the graph o f image correspondences
l i s t < s t r i n g > CMD;
s t r i n g aCMD;

//Define the pa t t e rn o f v i s u a l images
s t r i n g aPatImVIS="VIS∗"+aPatIm ;

// 1 . Read the xml f i l e con ta in ing coup l e s o f images

std : : vector< cCpleStr ing> ImCpls ;
i f (! DoesF i l eEx i s t ("GrapheHom . xml"))
{

aCMD= MM3DStr + " GrapheHom " + aDirImages + " \""
+ aPatImVIS + "\" " + Oris_VIS_dir ;
s td : : cout<<" Command "<<aCMD<<endl ;
CMD. push_back (aCMD) ;

4

cEl_GPAO : : DoComInParal (CMD) ;

std : : cout<<"Graph hom bu i l t \n" ;
}

+ The depth images are therefore computed. We choose to work in the
geometry ==> ZBu�erRaster

ELISE_ASSERT(ELISE_fp : : e x i s t_ f i l e (P lyF i l e In) , "Mesh f i l e not
computed or i s corrupted ") ;
s td : : cout<<" We checked the ply f i l e \n" ;
// 3 . Compute ZBuffer Images to ge t depth in format ion f o r each p i x e l
s t r i n g dirDepthImages=" . /Tmp−ZBuffer /" + PlyF i l e In ;

i f (! ELISE_fp : : e x i s t_ f i l e (dirDepthImages))
{

aCMD=MM3DStr + " TestLib ZBuf ferRaster " + PlyF i l e In + " \"" +
aPatImVIS + "\" " + Oris_VIS_dir ;
CMD. push_back (aCMD) ;
cEl_GPAO : : DoComInParal (CMD) ;

}

ELISE_ASSERT(ELISE_fp : : I sD i r e c t o r y (" . /Tmp−ZBuffer ") ,
" ZBuffer Di rec tory has not been crea ted ") ;

+ MSD and Sift keypoints are therefore computed for thermal and optical
images
==> MSD keypoints

// Thermal image

Tiff_Im ImTh=Tiff_Im : : UnivConvStd (ThermalImages . at (i)) ;
s td : : vector<KeyPoint> KpsTh=msd . de t e c t (ImTh) ;
StoreKps (KpsTh , FileTh) ;

// Opt i ca l image
Tiff_Im ImV=Tiff_Im : : UnivConvStd (VisualImages . at (i)) ;
s td : : vector<KeyPoint> KpsV=msd . de t e c t (ImV) ;
StoreKps (KpsV , FileV) ;

==> SIFT keypoints

CMD. c l e a r () ;
for (int i =0; i<ThermalImages . s i z e () ; i++)

{
std : : s t r i n g FileTh=Kpsf i leSIFT + "/" + ThermalImages . at (i) + " . key" ;
i f (! DoesF i l eEx i s t (FileTh . c_str ()))
{

aCMD= MM3DStr + " S i f t " + ThermalImages . at (i) + " −o " + FileTh ;
CMD. push_back (aCMD) ;

}
std : : s t r i n g FileV=Kpsf i leSIFT + "/" + VisualImages . at (i) + " . key" ;
i f (! DoesF i l eEx i s t (FileV . c_str ()))

5

{
aCMD= MM3DStr + " S i f t " + VisualImages . at (i) + " −o " + FileV ;
CMD. push_back (aCMD) ;

}
}

cEl_GPAO : : DoComInParal (CMD) ;

+ Computing thermal tie points using the algorithm explained in the in-
ternship report

for each couple o f o p t i c a l images g iven by GrapheHom
{
==> Determine t h e i r cor respond ing thermal images

==> Apply the homography p r ed i c t o r to the thermal images r e l a t i v e
keyPoints (MSD+ SIFT)

==> Use the o r i e n t a t i o n o f o p t i c a l images to compute homologous po in t s
Orient_Image ImV1(Oris_VIS_dir , ImCpls . at (i) . N1() ,aICNM) ;
Orient_Image ImV2(Oris_VIS_dir , ImCpls . at (i) . N2() ,aICNM) ;

==> Use the depth image to obta in Ground truth va lues
Depth=Im2D<REAL4,REAL>:: FromFileStd (FileDepthImV1) ;

i f (Prof !=−1)
{
Pt3dr pTerrain= ImV1 . getCam()−>ImDirEtProf2Terrain (Kps1H . at (j) , Prof ,
ImV1 . getCam()−>DirVisee ()) ;
Pt2dr PtImage2= ImV2 . getCam()−>Ter2Capteur (pTerrain) ;

Vo i s in s . c l e a r () ;

==> Search for homologous po in t s by se rach ing for nea r e s t
ne ighbours in the Slave keypo ints Tree

SlaveTree−>vo i s i n s (PtImage2 , distMax , Vo i s in s) ;

i f (Vo i s in s . s i z e ()>0)
{

Pt2dr P1(Kps1 . at (j) . getPoint () . x , Kps1 . at (j) . getPoint () . y) ;
Pt2dr Pnew(Kps2 . at (Vo i s in s . begin()−> f i r s t) . getPoint () . x ,
Kps2 . at (Vo i s in s . begin()−> f i r s t) . getPoint () . y) ;
HomologousPts . Cple_Add(ElCplePtsHomologues (P1 ,Pnew)) ;

}
}

}

The Overall process gives birth to a directory named ./Homol (same convention as
MicMac). This �le can be entered to Tapas to compute the thermal set orientation
(Interior + Exterior).

+ Computing thermo-optical tie points using the relevant algorithm ex-
plained in the internship report

for a l l images

6

{
Compute Keypoint masks and s t o r e them

i f (thermal)
{

Apply homography to the s e t o f Keypoints
}

else

{
Use Keypoints as they are

}
}

for each image in the datase t (thermal or op t i c a l)
{
1) Search for over lapp ing images (thermal and op t i c a l)

// search i n s i d e ImCpls
std : : vector<s t r i ng> VisuHomols ;
ParseHomol (VisualImages [i] , ImCpls , VisuHomols) ;

2) Get these images corre spond ing masks

for (a l l Keypoints in the master image)
{

3) Pro j e c t to ground
Pt3dr pTerrain= ImV. getCam()−>ImDirEtProf2Terrain
(AllKpsThermalHomog . at (i) . at (k) , Prof , ImV. getCam()−>DirVisee ()) ;

4) Search for t i e po in t s in the over lapp ing images
for (int n=0;n<(int) ThermalImages . s i z e () ; n++)

{
// the re i s a coup le o f thermal and v i s u a l images
seen by the master image
i f (WhichIsSeen [2∗n])

{
Orient_Image ImVslave (Oris_VIS_dir , VisualImages [n] ,aICNM) ;

4 . 1) Repro ject Ground po int in the over lpp ing image space

Pt2dr Pts lave= ImVslave . getCam()−>Ter2Capteur (pTerrain) ;

4 . 2) Search for homologous po in t s

Al lTrees−>at (2∗n)−>vo i s i n s (Pts lave , distMax , Vo i s in s) ;
}

}
5) Check for mu l t i p l i c i t y : I f the t i e po in t s are mu l i tp l e

}

}

The 5th step mandates the use of multiple tie points to make sure that there are su�cient
points seen by thermal and optical images. A subsequent link is then built between the
two modalities. We store 2D points coordinates according to their mother images. We

7

also store the ground truth optical point which has led to the 2D measures.
By the end, we obtain a �le of 3D and 2D measures where only thermal images are
involved (Remember we register thermal ====> Optical images, So we need thermal
2D points that are seen in optical images and have a ground values)

The 2D and 3D measure �les are then used by the command Bar available on MicMac
software whic computes a robust 3D similarity between TWO coordinate systems and
applies the computed transformation to the �rst set (THERMAL) orientation �les. The
latter is moved to the new frame (Optical).

3.2 MsdDetector

Maximum Self Dissimilarity (MSD) interest points are computed using this class. As
highlighted in the class diagram several parameters are involved in this process.

+ Int : m_patch_radius : The radius of the patch needed to compute the correlation
criterion (SSD or NCC)

+ Int : m_search_area_radius : The radius of the region over which the patches are
to be sliding

+ Int : m_nms_radius : The non maxima suppression step is de�ned over a certain
vicinity

+ Int : m_nms_scale_radius : Non maxima suppression is extended to the scale space
+ �oat : m_th_saliency : The saliency threshold.
+ Int : m_kNN : To compute the saliency operator, an average value is computed

rather than taking the distance to the most similar pixel (SSD or NCC). This
provides robustness under noise nuisances.

+ �oat : m_scale_factor : De�nes the scale factor for the pyramid computation.
+ Int : m_n_scales : The number of layers in the image pyramid
+ bool : _compute_orientation : Dictates whether we need to compute each keypoint

orientation or not.
+ bool : m_circular_window : Use a weighted wircular patch or not
+ bool : m_Re�nedKps : Re�ne Keypoints by �iting a quadric to the saliency map

at the initial keypoint location.
==> Methods
> float computeAvgDistance(std :: vector < float > & minV als, intden) : Com-

putes the saliency operator based on a set of nearest neighbours.
> void contextualSelfDissimilarity(Im2D < U_INT2, INT > & img, int xmin,

int xmax, float ∗ saliency) : Allows to compute saliency maps for the image py-
ramid (scale space) using a certain correlation criterion.

> float computeOrientation(Im2D < U_INT2, INT > & img, int x, int y, vector <
Pt2df > circle) : Computes the orientation of a certain interest point. It is needed
to make the description robust under rotation changes.

> void nonMaximaSuppression(std :: vector < float∗ > & saliency, vector <
KeyPoint > & keypoints) : This method performs non maxima suppression in the
scale space and in the current image space. It gives birth to the set of Keypoints.

> vector < KeyPoint > detect(Tiff_Im & img) : This methods wraps up the
whole process and calls all the other methods. It returns the set of keypoints
computed by the non Maxima Suppression method.

8

3.3 KeyPoint

We introduce a new class that de�ne a certain interest point by its coordinates, its
orientation (angle) and the scale at which it appears. Thses ingredients are necessary for
the description step to succed.

+ Pt2df : m_Point : Interest point coordinates
+ �oat : m_size : Interest point scale or size
+ �oat : m_angle : Interest point orientation
+ �oat : m_response : Interest point saliency value.

3.4 DescriptorExtractor

This class computes the SIFT descriptor for each interest point. It follows the steps
described in the original Paper (Lowe, 2004). It is inspired from the work of Arnaud Le
Bris under the Library Elise of MicMac.

+ Im2D<tData, tComp> : m_image : The image that is used to compute interest
points.

+ Im2D<REAL4, REAL8> : m_gradim ; The gradient image.
==> Methods
> void gradient(REAL8 i_maxV alue) : Computation of the gradient image.
> void describe(REAL8 i_x,REAL8 i_y,REAL8 i_localScale,

REAL8i_angle, REAL8 ∗o_descriptor); Compute the sift descriptor for a ceratin
interest point knowing its coordinates, orientation and characteristic scale.

> void normalizeDescriptor(REAL8 ∗ io_descriptor) : The SIFT descriptor is
therefore normalized to enhance robustness under radiometric changes.

> void truncateDescriptor(REAL8 ∗ io_descriptor) : Tuncate the descriptor va-
lues using a threshold of value 0.2.

3.5 ImagePyramid

This class is only used by the MsdDetector class to compute the image pyramid for a
multiscale analysis. It uses a resizing method which in turn exploits a Nearest Neighbour
interpolation scheme to assign radiometric values to the resized image.

3.6 Orient_Image

This class orients a certain image by using its orientation �le and the stenope prjec-
tion assumption (CamStenope). It Inherits the classes CamStenope that have methods
allowing to orient the camera according to the orientation �le. It is mainly used to take
advantage from the optical set orientation.

4 Conclusion

The present gives a brief explanation of the coding scheme that is followed to address
the registration of thermal to optical images. It is not exhaustive but discusses almost all
the coding steps so that the work could be exended.

9

The following steps are followed to perform teh registration task :

1. In a folder arbitrarily named, we put two images based on which we ll compute the
homography.
2. If these images are 16 bits, we store them as bit images (Detector threshold depend on
it). If not ===> ERROR
3. It is important to check the pre�x of images
(VIS,VIS−,Vis,Vis−...) and change the code accordingly (It needs to be adapted)

mm3d TestLib RegTIRVIS ”TestSet/.∗tif” .*tif Ori−VisualNewTieP/ MeshCloud.ply

4. ”TestSet/.∗tif” is an example of �older that contains 2 images and will be entered
as a parameter to compute the homography.

5.”.∗ tif” : Is the pattern of images in the parent folder ./ that represnet the dyke set.
For each thermal image there needs to be an Homologous optical image. If not ===>
ERROR

5.Ori-V isual-NewTieP/ is the optical set orientation �le that is used to compute
thermal and cross modality tie points.

6.MeshCloud.ply is the optical mesh not the 3d point cloud because we need it to
compute the depth maps. TiPunch applied before.

7. the code outputs :

7.1 ./Homol folder containing sets of thermal tie points that can be used after to
compute the thermal set orientation (Tapas ...)
7.2 2 �les named Mesure-2D.xml and Mesure-3D.xml : inputs to the GCPBascule or Bar
commant to compute the thermal set orientation in the optical coordinate system.
7.3 ./HomolInter folder where thermo-optical tie points are computed (In dev)

Always check the naming conventions of the images, for now we change the
code accordingly but later it is better to follow a certain naming convention

10

