RegTIRVIS : Thermo-optical image
registration

Mohamed Ali CHEBBI
13 octobre 2017

1 Introduction

The present paper explains the steps followed to coregister Thermal to optical images
using the Elise Library of MicMac. The main procedures are highlighted and their func-
tionalities explained. It will allow the programmer to understand the pieces of code.

2 Class diagram

The following digram highlights the different classes that are defined to fulfill the
registration task.

ImagePyramid

Im2D<Type, TyBase> : resize

= Leucl
Uses const std::vector< Im2D<Type, TyBase> > getimPyr()
MsdDetector
Int : m_patch_radius -
Int : m_search_area_radlus Orie m—lmage
Int : m_nms_radius
Int : m_nms_scale_radius CamStenope : * mCam;
float : m_th_sallency string : mName
:ﬂ:&ﬂ'ﬁ. scale_factor yses Uses String : mOriFileName
« TS _| H |-
Int : m_n_scales RegTIRVIS-maln g string - etl‘\l’::ﬂe
bool : m_compute_orientation 9 -9
bool : m_circular_window CamsStenope : * getCam
bool : m_RefinedKps String : getOrifileName

- vector<KeyPoint> : detect
- float : computeAvgdistance Use: ses
- void : contextualSelfDissimilarity
- float : computeQrientation

- void : nonMaximumSuppression

- void : RefineKP R R
Getter KeyPoint DescriptorExtractor
- int : getPatchRadius
- int : getSearchAreaRadius Pt2df : m_Point Im2D<tData, tComp>: m_image;
P N Usgs float : m_size Im2D<REAL4, REALS>: m_gradim;
- int : getNMSRadius float : m_angle g
- int : getNMSScaleRadius float : m_response : gradient
- float : getThSaliency Getter describe
- int : getKNN I Pt2df : getPoint normalizeDescriptor
- float : getScaleFactor > float : getAngle :,’;',",,‘i:;'ﬁﬁ:"{:’l[,,m
-int : getNScales - float : getSize -
- bool : getCircularWindow r float : getResponse
- bool : getRefinedKP Setter
OEleIS============| |

FIGURE 1 — Non exhaustive class diagram

3 Explaining the different classes and functionalities

3.1 RegTIRVIS main

This is the main function that enbody the whole registration process. It is not explai-
ned in the class diagram because there a lot of functions and procedures. Therefore, it
is handy to discuss them in detail. The overall process is based on searching algorithms
that use KD tree structures.

> wvoid Resizeim(Im2D < Type, TyBase > im,Im2D < Type, TyBase > Out,
Pt2dr Newsize) : This procedure is used to resize an image using a certain inter-
polation method. The need to resize images is dictated by the multiscale analysis
during MSD keypoints computation (Image pyramid)

> wvoid EnrichKps(vector < KeyPoint > Kpsfrom, Arbre KD x Tree,
cElHomographie &Homog,int Nblter) : As explained in the internship report,
the algorithm of keypoints enriching is encaplsulated in this procedure. The lat-
ter takes the initial keypoints with the matching-based homography to enrich tie
points using this a priori (Initial homography). This helps delocalize the homogra-
phy so that it will be a good predictor for dyke registration.

> wvoid wallis(Im2D < U_INT1,INT > & image,Im2D < U_INT1,INT >

& WallEqIm) : The Wallis filter algorithm is implemented using this procedure.

It takes as entry an image and gives an output image with the algorithm applied.

> wvoid Migrate2Lab2wallis(Tif f_Im & image, Im2D < U_INT1,INT > &
Output) : Prior to the description process, we perform RGB to lab colorimetric
transition and apply the wallis filter. The whole process is managed using this
procedure which calls a structure named RGB2Lab_b and the wallis procedure.

> wvoid StoreKps(vector < KeyPoint > K Ps,string file) : Sicne the computa-
tion time is high, we rather store computed keypoints so that we won’t do that
again.

> vector < Pt2dr > NewSetKpAfter Homog(std :: vector < KeyPoint > Kps,
cElHomographieH) : Applies a homography H to a set of Keypoints.

> wvector < Pt2dr > NewSetKpAfterHomog(std :: vector < SiftPoint > Kps,
cElHomographieH) : The same but for SiftPoint (s).

> vector < KeyPoint > FromSiftP2KeyP(vector < SiftPoint > Kps) : Allows
transitioning from SiftPoint class to KeyPoint class. It is applied to a whole set of
SiftPoint (s).

> wvoid Readkeypoints(std :: vector < KeyPoint > & Kps,string file) : Reads
a set of KeyPoint (s) stored in a certain file.

> string WhichThermallmage(string Visuallm,vector < string > ThermalSet) :
Identifies a thermal having as entries its homologous Visual or otpical image and
the whole set of thermal images.

> string WhichVisuallmage(string Thermallm,vector < string > VisualSet) :
Identifies an optical image having as entries its homologous thermal image and the
whole set of optical images.

> wvoid ParseHomol(string MasterImage,
vector < cCpleString > ImCpls,vector < string > &ListHomol) : Having a

set of overlpping images computed using the MicMac command GrapheHom, we
can determine for each thermal the set of overlpping thermal images without an a
priori on the orientation. Therefore, this procedure takes as entry a thermal image,
the set of overlapping couples (GrapheHom), and gives a list of image names that
overlap the entered thermal image.

struct PtAndIdx

Pt2dr Pt;
int Capturelndex;

}s
This structure encapsulates a Pt2dr point (2D) and its index in a vector of points.
It hemps us find the corresponding KeyPoint.

The latter overview is not exhaustive. Now, we focus on the thermal orientation problem.
We use a Test set to compute the homography predictor. Then, we use the homography
to infer matches (thermal + thermo-optical).
Taking the TestSet :

+ We compute MSD KeyPoint (s).

We move to the Lab and Wallis space.

mal + DigeoF'ile optical.

|
+ We compute the Sift Descriptor for each KeyPoint==> DigeoF'ile ther-
+ We match KeyPoint (s) using the available command : Ann

list <string> cmd;

string aCmd=MM3DStr + "_Ann_"+ std::string("-ratio_0.9") +
std::string ("_DigeoTH.txt") + std::string ("_DigeoV.txt")
std::string ("_Matches.txt");

cmd . push _back (aCmd) ;

cEl_GPAO:: DoComInParal (cmd);

+

+ We compute an initial robust homography using the matched interest
points.

bool Exist= ELISE fp::exist_file ("Matches.txt");
if (Exist)

HomologousPts= ElPackHomologue :: FromFile ("Matches. txt");
}
cElComposHomographie Ix (0,0,0);
cElComposHomographie Iy (0,0,0);
cElComposHomographie Iz (0,0,0);
cElHomographie H2estimate (Ix,Iy ,Iz);

double anEcart ,aQuality;

bool Ok;

Hout=H2estimate . RobustInit (anEcart ,&aQuality , HomologousPts ,0k,50,80.0,2000);
Hout . Show () ;

std :: cout<<"ecart_"<<anEcart<<endl;

std :: cout<<"quality_"<<aQuality<<endl;

std :: cout<<Ok<<endl;

+ We enrich keypoints having the intial a priori (Homography) and com-
pute the final homography predictor.

// Construct a Kd tree for the destination keypoints (slave image: optical)

ArbreKD % ArbreV= new ArbreKD (Pt of Point, box, KpsV.size (), 1.0);
for (uint i=0; i<KpsV.size (); i++)

{
ArbreV—insert (pair<int ,Pt2dr>(i, Pt2dr(KpsV.at(i).getPoint ().x,

KpsV.at(i).getPoint ().y)));
// Call Enrich Keypoints to use the homography as predictor

EnrichKps (KpsTh, ArbreV ,Hout ,5);

Now that the homography predictor is computed using a couple of thermal and op-
tical image (From the tractor dataset : TestSet), we can move forward to compute the
Dyke thermal set orientation and the 3D similarity that link both optical and thermal
coordinate systems.

—==> Dataset : Dyke

The overall process is explained hereafter :

+ First of all, we need to check that each thermal image has its corres-
ponding optical one. The whole set is therefore coherent.
Thermal images should have the prefix TIR
Optical images should have the prefix VIS

+ An a priori on the thermal set visibility or overlapping is acquired using
the optical set orientation ==—> GrapheHom

//Compute the graph of image correspondences
list < string > CMD;
string aCMD;

//Define the pattern of visual images
string aPatImVIS="VISx"+aPatlm ;

//1. Read the zml file containing couples of images

std :: vector< cCpleString> ImCpls;
if (!DoesFileExist ("GrapheHom .xml"))
{
aCMD= MM3DStr + "_GrapheHom_" + aDirImages + "_\""
+ aPatImVIS + "\"_" + Oris_VIS_dir;
std :: cout<<" _Command_"<<aCMD<<end]l ;
CMD. push _back (aCMD) ;

cEl GPAO::DoComlInParal (CMD) ;

std :: cout<<"Graph_hom_built _\n";

}

+ The depth images are therefore computed. We choose to work in the
geometry ==> ZBufferRaster
ELISE_ASSERT(ELISE fp::exist file(PlyFileIn),"Mesh_file_not
computed_or_is_corrupted_");
std :: cout<<"_We_checked _the_ply_file_\n";
//8. Compute ZBuffer Images to get depth information for each pizel
string dirDepthlmages="./Tmp-ZBuffer/" + PlyFileln;

if (!ELISE fp::exist_ file(dirDepthImages))

{
aCMD=MM3DStr + "_TestLib_ZBufferRaster_" + PlyFileIn + "_\"" +
aPatImVIS + "\"_" + Oris_ VIS_dir;
CMD. push _back (aCMD) ;
cEl _GPAO:: DoComInParal (CMD) ;
}

ELISE ASSERT(ELISE fp::IsDirectory ("./Tmp-ZBuffer"),
"ZBuffer_Directory_has_not_been_created");

+ MSD and Sift keypoints are therefore computed for thermal and optical
images
==> MSD keypoints
// Thermal image

Tiff Im ImTh=Tiff Im :: UnivConvStd(Thermallmages.at(i));
std :: vector <KeyPoint> KpsTh=msd. detect (ImTh);
StoreKps (KpsTh, FileTh);

//Optical image

Tiff Im ImV=Tiff Im :: UnivConvStd(Visuallmages.at(i));
std :: vector <KeyPoint> KpsV=msd . detect (ImV);

StoreKps (KpsV, FileV);

==> SIFT keypoints

CMD. clear ();
for (int i=0;i<Thermallmages.size ();i++)
{
std::string FileTh=KpsfileSIFT + "/" + Thermallmages.at(i) + ".key";
if (!DoesFileExist (FileTh.c_str()))
{
aCMD= MM3DStr + "_Sift_" + Thermallmages.at(i) + "_—o_" + FileTh;
CMD. push_back (aCMD) ;
}
std::string FileV=KpsfileSIFT + "/" + Visuallmages.at(i) + ".key";
if (!DoesFileExist (FileV.c_str()))

aCMD= MM3DStr + "_Sift_" + Visuallmages.at(i) + "_—o_" + FileV;
CMD. push _back (aCMD) ;

}
}
cEl GPAO:: DoComInParal (CMD);

+ Computing thermal tie points using the algorithm explained in the in-
ternship report

for each couple of optical images given by GrapheHom

{

==> Determine their corresponding thermal images

——> Apply the homography predictor to the thermal images relative
keyPoints (MSD+ SIFT)

—> Use the orientation of optical images to compute homologous points
Orient _Image ImV1(Oris_VIS_dir,ImCpls.at(i).NI1() ,aICNM);
Orient Image ImV2(Oris VIS dir,ImCpls.at(i).N2() ,aICNM);

—=—> Use the depth image to obtain Ground truth values
Depth=Im2D<REAL4,REAL>:: FromFileStd (FileDepthImV1);
if (Profl=-1)
{

Pt3dr pTerrain= ImV1.getCam()—>ImDirEtProf2Terrain (KpslH.at(j),Prof,
ImV1.getCam()—>DirVisee ());
Pt2dr PtImage2= ImV2.getCam()—>Ter2Capteur(pTerrain);

Voisins. clear ();

——> Search for homologous points by seraching for nearest
neighbours in the Slave keypoints Tree

SlaveTree—>voisins (PtImage2, distMax, Voisins);

if (Voisins.size()>0)

{
Pt2dr P1(Kpsl.at(j).getPoint ().x, Kpsl.at(j).getPoint().y);

(
Pt2dr Pnew(Kps2.at(Voisins.begin()—>first).getPoint ().x,
Kps2.at (Voisins.begin()—>first). getPoint ().y);
HomologousPts.Cple Add(ElCplePtsHomologues (P1,Pnew));

}

The Overall process gives birth to a directory named ./Homol (same convention as
MicMac). This file can be entered to Tapas to compute the thermal set orientation
(Interior + Exterior).

+ Computing thermo-optical tie points using the relevant algorithm ex-
plained in the internship report

for all images

{

Compute Keypoint masks and store them
if (thermal)

Apply homography to the set of Keypoints
els

Use Keypoints as they are

E
}
i
}

}

for each image in the dataset (thermal or optical)

{

1)Search for overlapping images (thermal and optical)
//search inside ImCpls
std :: vector<string> VisuHomols;
ParseHomol (Visuallmages[i],ImCpls, VisuHomols) ;
2) Get these images corresponding masks

for (all Keypoints in the master image)

{

3) Project to ground
Pt3dr pTerrain= ImV.getCam()—>ImDirEtProf2Terrain
(AllKpsThermalHomog. at (i).at (k) ,Prof ,ImV.getCam()—>DirVisee ());

4) Search for tie points in the overlapping images
for (int n=0;n<(int)Thermallmages. size ();n++)

{

// there is a couple of thermal and visual images
seen by the master image
if (WhichIsSeen|[2%n])

{

Orient Image ImVslave(Oris VIS dir, Visuallmages|[n],alCNM);

4.1) Reproject Ground point in the overlpping image space
Pt2dr Ptslave= ImVslave.getCam()—>Ter2Capteur (pTerrain);

4.2) Search for homologous points

AllTrees—>at (2+«n)—>voisins (Ptslave , distMax, Voisins);

}

5) Check for multiplicity: If the tie points are mulitple

}

The 5" step mandates the use of multiple tie points to make sure that there are sufficient
points seen by thermal and optical images. A subsequent link is then built between the
two modalities. We store 2D points coordinates according to their mother images. We

also store the ground truth optical point which has led to the 2D measures.

By the end, we obtain a file of 3D and 2D measures where only thermal images are
involved (Remember we register thermal ====> Optical images, So we need thermal
2D points that are seen in optical images and have a ground values)

The 2D and 3D measure files are then used by the command Bar available on MicMac
software whic computes a robust 3D similarity between TWO coordinate systems and
applies the computed transformation to the first set (THERMAL) orientation files. The
latter is moved to the new frame (Optical).

3.2 MsdDetector

Maximum Self Dissimilarity (MSD) interest points are computed using this class. As
highlighted in the class diagram several parameters are involved in this process.

+ Int : m_patch_radius : The radius of the patch needed to compute the correlation
criterion (SSD or NCC)

+ Int : m_search_area_radius : The radius of the region over which the patches are
to be sliding

+ Int : m_nms_radius : The non maxima suppression step is defined over a certain
vicinity

+ Int : m_nms_scale_radius : Non maxima suppression is extended to the scale space

+ float : m_th_saliency : The saliency threshold.

+ Int : m_kNN : To compute the saliency operator, an average value is computed
rather than taking the distance to the most similar pixel (SSD or NCC). This
provides robustness under noise nuisances.

+ float : m_scale_factor : Defines the scale factor for the pyramid computation.

+ Int : m_n_scales : The number of layers in the image pyramid

+ bool : _compute_orientation : Dictates whether we need to compute each keypoint
orientation or not.

+ bool : m_circular_window : Use a weighted wircular patch or not

+ bool : m_RefinedKps : Refine Keypoints by fiiting a quadric to the saliency map

at the initial keypoint location.

==> Methods

> float computeAvgDistance(std :: vector < float > & minVals,intden) : Com-
putes the saliency operator based on a set of nearest neighbours.

> woid contextual Sel f Dissimilarity(Im2D < U_INT2,INT > & img,int xmin,
int xmazx, float * saliency) : Allows to compute saliency maps for the image py-
ramid (scale space) using a certain correlation criterion.

> float computeOrientation(Im2D < U_INT2, INT > & img,int z,int y,vector <
Pt2df > circle) : Computes the orientation of a certain interest point. It is needed
to make the description robust under rotation changes.

> wvoid nonMazimaSuppression(std :: vector < floatx > & saliency,vector <
KeyPoint > & keypoints) : This method performs non maxima suppression in the
scale space and in the current image space. It gives birth to the set of Keypoints.

> vector < KeyPoint > detect(Tiff_Im & img) : This methods wraps up the
whole process and calls all the other methods. It returns the set of keypoints
computed by the non Maxima Suppression method.

3.3 KeyPoint

We introduce a new class that define a certain interest point by its coordinates, its
orientation (angle) and the scale at which it appears. Thses ingredients are necessary for
the description step to succed.

+ Pt2df : m_Point : Interest point coordinates

+ float : m_size : Interest point scale or size

+ float : m_angle : Interest point orientation

+ float : m_response : Interest point saliency value.

3.4 DescriptorExtractor

This class computes the SIFT descriptor for each interest point. It follows the steps
described in the original Paper (Lowe, 2004). Tt is inspired from the work of Arnaud Le
Bris under the Library Elise of MicMac.

+ Im2D<tData, tComp> : m_image : The image that is used to compute interest

points.

+ Im2D<REAL4, REAL8> : m_gradim ; The gradient image.

==> Methods

> wvoid gradient(REAL8 i_maxValue) : Computation of the gradient image.

> wvoid describe(REALS i_x, REALS i_y, REALS i_localScale,

REALSi_angle, REALS8 xo_descriptor); Compute the sift descriptor for a ceratin
interest point knowing its coordinates, orientation and characteristic scale.

> wvoid normalizeDescriptor(REALS * io_descriptor) : The SIFT descriptor is

therefore normalized to enhance robustness under radiometric changes.

> woid truncateDescriptor(REAL8 xio_descriptor) : Tuncate the descriptor va-

lues using a threshold of value 0.2.

3.5 ImagePyramid

This class is only used by the MsdDetector class to compute the image pyramid for a
multiscale analysis. It uses a resizing method which in turn exploits a Nearest Neighbour
interpolation scheme to assign radiometric values to the resized image.

3.6 Orient_Image

This class orients a certain image by using its orientation file and the stenope prjec-
tion assumption (CamStenope). It Inherits the classes CamStenope that have methods
allowing to orient the camera according to the orientation file. It is mainly used to take
advantage from the optical set orientation.

4 Conclusion

The present gives a brief explanation of the coding scheme that is followed to address
the registration of thermal to optical images. It is not exhaustive but discusses almost all
the coding steps so that the work could be exended.

The following steps are followed to perform teh registration task :

1. In a folder arbitrarily named, we put two images based on which we 1l compute the
homography.
2. If these images are 16 bits, we store them as bit images (Detector threshold depend on
it). If not ===> ERROR
3. It is important to check the prefix of images
(VIS,VIS—,Vis,Vis—...) and change the code accordingly (It needs to be adapted)

mm3d TestLib RegTIRVIS "TestSet/.«tif” .*tif Ori—VisualNewTieP/ MeshCloud.ply

4.7 TestSet/.«tif” is an example of fiolder that contains 2 images and will be entered
as a parameter to compute the homography.

5.7.xtif” : Is the pattern of images in the parent folder ./ that represnet the dyke set.
For each thermal image there needs to be an Homologous optical image. If not =———>
ERROR

5.07ri-Visual-NewTieP/ is the optical set orientation file that is used to compute
thermal and cross modality tie points.

6.MeshCloud.ply is the optical mesh not the 3d point cloud because we need it to
compute the depth maps. TiPunch applied before.

7. the code outputs :

7.1 ./Homol folder containing sets of thermal tie points that can be used after to
compute the thermal set orientation (Tapas ...)
7.2 2 files named Mesure-2D.xml and Mesure-3D.xml : inputs to the GCPBascule or Bar
commant to compute the thermal set orientation in the optical coordinate system.
7.3 ./Homollnter folder where thermo-optical tie points are computed (In dev)

Always check the naming conventions of the images, for now we change the
code accordingly but later it is better to follow a certain naming convention

10

