20
21

26

29

30

33
34

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20091

ConnPlotter: A Tutorial

Author: Hans Ekkehard Plesser

Institution: Norwegian University of Life Sciences, Simula Research Laboratory,
RIKEN Brain Sciences Institute

Version: 0.7

Date: 1 December 2009

Copyright: Hans Ekkehard Plesser

License: Creative Commons Attribution-Noncommercial-Share Alike License v 3.0
Introduction

This tutorial gives a brief introduction to the ConnPlotter toolbox. It is by no means complete.
Avoid interactive backend

import matplotlib
matplotlib.use (7Agg”)
Import pylab to call pylab.show() so that pyreport can capture figures created. Must come before import
ConnPlotter so we get the correct show().
import pylab

Import ConnPlotter and its examples

import ConnPlotter as cpl

ConnPlotter Copyright (C) 2009 Hans Ekkehard Plesser/UMB

ConnPlotter comes with ABSOLUTELY NO WARRANTY.
ConnPlotter is free software, and you are welcome to redistribute it
under certain conditions. See GNU Public License v.3 or later for details.

import ConnPlotter.examples as ex

Turn of warnings about resized figure windows
import warnings
warnings.simplefilter ("ignore”)
Define a helper function to show LaTeX tables on the fly
def showTextTable(connPattern, fileTrunk):

Shows a Table of Connectivity as textual table.

Arguments:
connPattern ConnectionPattern instance
fileTrunk Eventual PNG image will be fileTrunk.png

nimn

import subprocess as subp # to call LaTeX etc
import os # to remove files

Write to LaTeX file so we get a nice textual representation

We want a complete LaTeX document, so we set ‘‘standalone ‘°

to ‘‘True ‘.

connPattern.toLaTeX(file=fileTrunk+’.tex’, standalone=True, enumerate=

True)
Create PDF, crop, and convert to PNG
try:

devnull = open(’/dev/null’, ’w’)

subp.call ([’ pdflatex’, fileTrunk], stdout=devnull, stderr=subp.
STDOUT)

68
69
70
71
72
73
74
75
76
7

75

78

81

93
94

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20092

need wrapper, since pdfcrop does not begin with #!

subp.call ([’pdfcrop_wrapper.sh’, fileTrunk+’.pdf’],
stdout=devnull , stderr=subp.STDOUT)

devnull.close ()

os.rename(fileTrunk+ '—crop.pdf’, fileTrunk+’.pdf’)

)

for suffix in (’.tex’, ’—crop.pdf’, ’.png’, ’.aux’, ’'.log’):
if os.path.exists(fileTrunk + suffix):
os.remove (fileTrunk + suffix)
except:
raise Exception(’Could not create PDF Table.’)

Simple network

This is a simple network with two layers A and B; layer B has two populations, E and I. On the NEST side,
we use only synapse type static_synapse. ConnPlotter then infers that synapses with positive weights should
have type exc, those with negative weight type inh. Those two types are know to ConnPlotter.

Obtain layer, connection and model list from the example set

s_layer , s_conn, s_model = ex.simple ()

Create Connection Pattern representation

s_.cp = cpl.ConnectionPattern(s_layer , s_conn)

Show pattern as textual table (we cheat a little and include PDF directly)
showTextTable(s_cp, ’'simple_tt’)

Connectivity ‘

Src Tgt Syn | Wght Mask Kernel
111G RG/E | exc 2 <02 0.8

2| 1G RG/I | exc 2 <03 04

3 | RG/E | RG/E | exc 2 [(—0.4,-0.2),(4+04,40.2)] | 1

4 | RG/E | RG/E | exc 2 [(=0.2,—04),(+0.2,404)] | 1

5| RG/E | RG/l | exc 5 <05 G(po=1,0=0.1)
6

7

g

RG/I | RGE |inh | -3 <025 G(py=1,0=02)
RG/I | RG/ |inh | -05 <1 0.5

—x2 / 202

(po,0): p(x) = poe

Show pattern in full detail

A separate patch is shown for each pair of populations.

e Rows represent senders, columns targets.
e Layer names are given to the left/above, population names to the right and below.
e Excitatory synapses shown in blue, inhibitory in red.

e Each patch has its own color scale.

s_cp.plot ()
pylab.show ()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20093

IG RG
< e @

- E

. |
E |

exc I i I

RG

Let us take a look at what this connection pattern table shows:

e The left column, with header “A”, is empty: The “A” layer receives no input.
e The right column shows input to layer “B”

— The top row, labeled “A”, has two patches in the “B” column:
* The left patch shows relatively focused input to the “E” population in layer “B” (first row of
“Connectivity” table).
* The right patch shows wider input to the “I” population in layer “B” (second row of “Connectivity”
table).
x Patches are red, indicating excitatory connections.
* In both cases, mask are circular, and the product of connection weight and probability is inde-
pendent of the distance between sender and target neuron.
— The grey rectangle to the bottom right shows all connections from layer “B” populations to layer “B”
populations. It is subdivided into two rows and two columns:
Left column: inputs to the “E” population.
Right column: inputs to the “I” population.
Top row: projections from the “E” population.
Bottom row: projections from the “I” population.
There is only one type of synapse for each sender-target pair, so there is only a single patch per
pair.
Patches in the top row, from population “E” show excitatory connections, thus they are red.
* Patches in the bottom row, from population “I” show inhibitory connections, thus they are blue.
* The patches in detail are:
- E to E (top-left, row 3+4 in table): two rectangular projections at 90 degrees.
- E to I (top-right, row 5 in table): narrow gaussian projection.
- I to E (bottom-left, row 6 in table): wider gaussian projection.
- I to I (bottom-right, row 7 in table): circular projection covering entire layer.

S N

*

e NB: Color scales are different, so one cannot compare connection strengths between patches.

Full detail, common color scale

128 | s_cp.plot(globalColors=True)
129 | pylab .show ()

RG
.

E

exc (T inn (IO
0.0.3.a5 0.0.3.45

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20094

This figure shows the same data as the one above, but now all patches use a common color scale, so full
intensity color (either red or blue) indicates the strongest connectivity. From this we see that

e A to B/E is stronger than A to B/I
e B/E to B/I is the strongest of all connections at the center

e B/I to B/E is stronger than B/I to B/I

Aggregate by groups

For each pair of population groups, sum connections of the same type across populations.

142 |s_cp.plot CaggrGroups=True)
143 | pylab .show ()

RG

e [

In the figure above, all excitatory connections from B to B layer have been combined into one patch, as have
all inhibitory connections from B to B. In the upper-right corner, all connections from layer A to layer B have
been combined; the patch for inhibitory connections is missing, as there are none.

Aggregate by groups and synapse models

152 | s_cp.plot CaggrGroups=True, aggrSyns=True)
153 | pylab .show ()

Inh Exc

When aggregating across synapse models, excitatory and inhibitory connections are combined. By default,
excitatory connections are weights with +1, inhibitory connections with -1 in the sum. This may yield kernels
with positive and negative values. They are shown on a red-white-blue scale as follows:

e White always represents 0.
e Positive values are represented by increasingly saturated red.

e Negative values are represented by increasingly saturated blue.

Colorscales are separate for red and blue:

— largest positive value: fully saturated red

— largest negative value: fully saturated blue

Each patch has its own colorscales.

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20095

e When aggrSyns=True is combined with globalColors=True, all patches use the same minimum and
maximum in their red and blue color scales. The the minimum is the negative of the maximum, so that
blue and red intesities can be compared.

169 |s_cp.plot(CaggrGroups=True, aggrSyns=True, globalColors=True)
170 | pylab .show ()

RG -

-3

e We can explicitly set the limits of the color scale; if values exceeding the limits are present, this is indicated
by an arrowhead at the end of the colorbar. User-defined color limits need not be symmetric about 0.

173 | s_cp.plot CaggrGroups=True, aggrSyns=True, globalColors=True, colorLimits=|[
-2,3])
174 | pylab .show ()

RG

—-16D30

Save pattern to file

178 |s_cp.plot(file=’simple_example.png’)
This saves the detailed diagram to the given file. If you want to save the pattern in several file formats, you
can pass a tuple of file names, e.g., s_cp.plot(file=(’a.eps’, ’a.png’)).
NB: Saving directly to PDF may lead to files with artifacts. We recommend to save to EPS and the convert
to PDF.

Build network in NEST

190 | import nest

191 | import nest.topology as topo
Create models

195 | for model in s_model:

196 nest.CopyModel (model[0], model[1], model[2])
Create layers, store layer info in Python variable

199 | for layer in s_layer:

200 exec '%s = topo.CreateLayer(layer[1])’ % layer[0]
Create connections, need to insert variable names

203 | for conn in s_conn:

204 eval (’topo.ConnectLayer(%s,%s,conn[2])’ % (conn[0], conn[1]))
205

206 | nest.Simulate (10)

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20096

Ooops:* Nothing happened? Well, it did, but pyreport cannot capture the output directly generated by
NEST. The absence of an error message in this place shows that network construction and simulation went
through.

Inspecting the connections actually created

The following block of messy and makeshift code plots the targets of the center neuron of the B/E population
in the B/E and the B/I populations.

214 | B_top = nest.GetStatus (RG, ’topology’)[0]

215 | ctr_id = topo.GetElement (RG, [B_top[’'rows’]/2, B_top[’columns’]/2])

216

217 |# find excitatory element in B

218 | E_id = [gid for gid in nest.GetlLeaves(ctr_id)[0]

219 if nest.GetStatus([gid], 'model’)[0] = ’E’]

220

221 # get all targets, split into excitatory and inhibitory

222 alltgts = nest.GetStatus(nest.FindConnections(E_id, synapse_type=’
static_synapse’), ’target’)

223 | Etgts = [t for t in alltgts if nest.GetStatus([t], 'model’)[0] = 'E’]

224 | Itgts = [t for t in alltgts if nest.GetStatus([t], 'model’)[0] = 1]

225

226 | # obtain positions of targets

227 | Etpos = zip (¥[topo. GetPosition([n]) for n in Etgts])

228 Itpos = zip (*[topo.GetPosition([n]) for n in ltgts])

229

230 |# plot excitatory

231 | pylab.clf)

232 | pylab.subplot (121)

233 | pylab.scatter (Etpos[0], Etpos[1])

234 | ctrpos = pylab.array(topo.GetPosition (E_id))

235 |ax = pylab.gca ()

236 | ax.add_patch (pylab. Circle (ctrpos, radius=0.02, zorder = 99,

237 fc = 'r’, alpha = 0.4, ec = ’none’))

238 | ax.add_patch (pylab.Rectangle(ctrpos + pylab.array((-0.4,-0.2)), 0.8, 0.4,
zorder = 1,

239 fc = 'none’, ec = 'r’, lw=3))

240 | ax.add_patch (pylab.Rectangle(ctrpos + pylab.array((-0.2,-0.4)), 0.4, 0.8,
zorder = 1,

241 fc = 'none’, ec = 'r’, |lw=3))

242 ax.add_patch (pylab.Rectangle(ctrpos + pylab.array((-0.5,-0.5)), 1.0, 1.0,
zorder = 1,

243 fc = 'none’, ec = 'k’, Ilw=3))

244 | ax.set (aspect="equal’, xlim=[-0.5,0.5], ylim=[-0.5,0.5],

245 xticks=[], yticks=[])

246

247 |# plot inhibitory

248 | pylab.subplot (122)

249 | pylab.scatter (ltpos[0], Itpos[1])

250 | ctrpos = topo.GetPosition (E_id)

251 'ax = pylab.gca (O

252 | ax.add_patch (pylab. Circle (ctrpos, radius=0.02, zorder = 99,

253 fc = 'r’, alpha = 0.4, ec = ’'none’))

254 | ax.add_patch (pylab. Circle (ctrpos, radius=0.1, zorder = 2,

255 fc = 'none’, ec = 'r’, lw=2, I|s=’dashed’))

256 | ax.add_patch (pylab. Circle (ctrpos, radius=0.2, zorder = 2,

257 fc = 'none’, ec = 'r’, lw=2, |s=’"dashed’))

258 | ax.add_patch (pylab. Circle (ctrpos, radius=0.3, zorder = 2,

259 fc = '"none’, ec = 'r’, lw=2, |s=’"dashed’))

260 ' ax.add_patch (pylab. Circle (ctrpos, radius=0.5, zorder = 2,

261 fc = 'none’, ec = 'r’, lw=3))

262
263
264
265
266

279
280
281

286
287

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20097

ax.add_patch(pylab.Rectangle ((-0.5,-0.5), 1.0, 1.0, zorder = 1,
fc = 'none’, ec = 'k’, lw=3))
ax.set (aspect="equal’, xlim=[-0.5,0.5], ylim=[-0.5,0.5],
xticks=[], yticks=[])
pylab.show ()

Thick red lines mark the mask, dashed red lines to the right one, two and three standard deviations. The
sender location is marked by the red spot in the center. Layers are 40x40 in size.

A more complex network

This network has layers A and B, with E and I populations in B. The added complexity comes from the fact
that we now have four synapse types: AMPA, NMDA, GABA_A and GABA_B. These synapse types are known
to ConnPlotter.

Setup and tabular display

c_layer , c_conn, c_model = ex.complex ()
c_cp = cpl.ConnectionPattern(c_layer, c_conn)
showTextTable(c_cp, ’complex_tt’)

Src Tgt Syn Wght Mask Kernel
111G RG/E | AMPA 5 <02 0.8
2| 1G RG/l | AMPA 2 <03 0.4
3 | RG/E | RG/E | AMPA 2 | [(—04,-02),(+0.4,+02)] | 1
4 | RGE | RG/E | NMDA 2 | [(-02,-04),(+0.2,+04)] | 1
5 | RG/E | RG/I | AMPA 1 <05 G(po=1,0=1)
6 | RG/I | RG/E | GABA_A | -3 <025 G(po=1,0=05)
7 | RG/I | RG/E | GABA B | -1 <05 G(po = 05,0 = 0.3)
8 | RG/I | RG/I | GABA_A | -0.5 <1 0.1

—x2 /202

G(po,0): p(x) = poe

Pattern in full detail

c_cp.plot
pylab .show ()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20098

IG RG

IG o .

=i@

ol
E |

avven [oA [Gasa A I G+cA © I

RG

Note the following differences to the simple pattern case:

e For each pair of populations, e.g., B/E as sender and B/E as target, we now have two patches representing
AMPA and NMDA synapse for the E population, GABA_A and _B for the I population.

e Colors are as follows:

AMPA: red
NMDA: orange
GABA_A: blue
GABA _B: purple

e Note that the horizontal rectangular pattern (table line 3) describes AMPA synapses, while the vertical
rectangular pattern (table line 4) describes NMDA synapses.

Full detail, common color scale

302 |c_cp.plot(globalColors=True)
303 | pylab.show ()

RG

avpa, [T wwoa [T T oneA A [T cAen s [T I
012 3 4 012 3 4 012 3 4 012 3 4

E |

As above, but now with a common color scale. NB: The patch for the B/I to B/I connection may look
empty, but it actually shows a very light shade of red. Rules are as follows:

e If there is no connection between two populations, show the grey layer background.
e All parts of the target layer that are outside the mask or strictly zero are off-white.

e If it looks bright white, it is a very diluted shade of the color for the pertaining synpase type.

Full detail, explicit color limits

314 c_cp.plot(colorLimits=[0,1])
315 | pylab.show ()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 20099

IG RG

. i

E |

RG

AvPA [NN NMDA GABAA [[N GABAB
0.00.26.50.7%.00 0.00.26.50.75.00 0.00.26.50.7%.00 0.00.26.50.75.00

As above, but the common color scale is now given explicitly. The arrow at the right end of the color scale
indicates that the values in the kernels extend beyond +1.

Aggregate by synapse models

For each population pair, connections are summed across synapse models.

e Excitatory kernels are weighted with +1, inhibitory kernels with -1.

e The resulting kernels are shown on a color scale ranging from red (inhibitory) via white (zero)
to blue (excitatory).

e Each patch has its own color scale

331 |c_cp.plot(CaggrSyns=True)
332 | pylab.show ()

RG

e AMPA and NMDA connections from B/E to B/E are now combined to form a cross.

e GABA_A and GABA_B connections from B/I to B/E are two concentric spots.

Aggregate by population group

339 \ c_cp.plot(aggrGroups=True)
340 ‘pylab.show()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200910

IG RG

Y Teeaavey DSy

RG

This is in many ways orthogonal to aggregation by synapse model: We keep synapse types separat, while we
combine across populations. Thus, we have added the horizonal bar (B/E to B/E, row 3) with the spot (B/E

to B/I, row 5).
Aggregate by population group and synapse model

347 | c_cp.plot C(aggrGroups=True, aggrSyns=True)
348 | pylab .show ()

RG -

Inh Exc

All connection are combined for each pair of sender/target layer.

CPTs using the total charge deposited (TCD) as intensity

TCD-based CPTs are currently only available for the ht_neuron, since ConnPlotter does not know how to
obtain int g(t) dt from NEST for other conductance-based model neurons. We need to create a separate
ConnectionPattern instance for each membrane potential we want to use in the TCD computation

360 | c_cp_75 = cpl.ConnectionPattern(c_layer , c_conn, intensity="tcd’,
361 mList=c_model , Vmem=-75.0)
362 | c_cp-45 = cpl.ConnectionPattern(c_layer, c_conn, intensity="tcd’,
363 mList=c_model , Vmem=-45.0)

In order to obtain a meaningful comparison between both membrane potentials, we use the same global
color scale

V_m = -75 mV

369 | c_cp_75.plot(colorLimits=[0,150])
370 | pylab .show ()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200911

IG o

RG

E |

Avea [T nmoa [T 117 Gasa A [T GABA B
0 40 80120 0 40 80120 0 40 80120 0 40 80120

V_m = -45 mV

374 | c_cp_45.plot(colorLimits=[0,150])
375 | pylab .show ()

RG
® |
E I

avea [T nmoA [T T Gasa A [N GABAB
0 40 80120 0 40 80120 0 40 80120 0 4080120

Note that the NMDA projection virtually vanishes for V_m=-75mV, but is very strong for V_m=-45mV.
GABA_A and GABA_B projections are also stronger, while AMPA is weaker for V_.m=-45mV.

Non-Dale network model

By default, ConnPlotter assumes that networks follow Dale’s law, i.e., either make excitatory or inhibitory
connections. If this assumption is violated, we need to inform ConnPlotter how synapse types are grouped. We
look at a simple example here.

Load model

388 | nd_layer , nd_conn, nd_model = ex.non_dale ()
We specify the synapse configuration using the synTypes argument:
e synTypes is a tuple.

e Each element in the tuple represents a group of synapse models

Any sender can make connections with synapses from one group only.

Each synapse model is specified by a SynType.

The SynType constructor takes three arguments:

— The synapse model name
— The weight to apply then aggregating across synapse models
— The color to use for the synapse type

e Synapse names must be unique, and must form a superset of all synapse models in the network.

404 | nd_cp = cpl.ConnectionPattern(nd_layer , nd_conn, synTypes=(

405 (cpl.SynType(’exc’, 1.0, ’b’), cpl.SynType(’inh’, -1.0, ’'r’)),)
)

406 | showTextTable(nd_cp, 'non_dale_tt’)

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200912

Connectivity |

Src | Tgt | Syn | Wght Mask Kernel
1A B exc 2 <02 0.8
2 A B inh -2 <03 0.4
3| B A exc 2 [(—04,-0.2),(+04,+0.2)] | 1
4| B A inh -2 [(=0.2,—04),(+02,404)] | 1

408
409 ' nd_cp.plot ()
410 | pylab .show ()

A B

A o @

o N o I

Note that we now have red and blue patches side by side, as the same population can make excitatory and
inhibitory connections.

Configuring the ConnectionPattern display

I will now show you a few ways in which you can configure how ConnPlotter shows connection patterns.

User defined synapse types
By default, ConnPlotter knows two following sets of synapse types.
exc/inh

e Used automatically when all connections have the same synapse_model.
e Connections with positive weight are assigned model exc, those with negative weight model inh.
e When computing totals, exc has weight +1, inh weight -1

e Exc is colored blue, inh red.
AMPA /NMDA/GABA_A/GABA_B

e Used if the set of synapse_model s in the network is a subset of those four types.
o AMPA/NMDA carry weight +1, GABA_A/GABA_B weight -1.
e Colors are as follows:

AMPA: blue

NMDA: green

GABA_A: red

GABA_B: magenta

We saw a first example of user-defined synapse types in the non-Dale example above. In that case, we
only changed the grouping. Here, I will demonstrate the effect of different ordering, weighting, and color
specifications. We use the complex model from above as example.

NOTE: Tt is most likey a bad idea to change the colors or placement of synapse types. If everyone uses the
same design rules, we will all be able to read each others figures much more easily.

Placement of synapse types

The synTypes nested tuple defines the placement of patches for different synapse models. Default layout is

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200913

AMPA NMDA
GABA_A | GABA B

All four matrix elements are shown in this layout only when using mode=’1layer’ display. Otherwise, one or
the other row is shown. Note that synapses that can arise from a layer simultaneously, must always be placed
on one matrix row, i.e., in one group. As an example, we now invert placement, without any other changes:

467

468 | cinv_syns = ((cpl.SynType(’GABAB’, -1, 'm’), cpl.SynType(’GABAA’, -1, ’'r’
D),

469 (cpl.SynType ('NMDA’ , 1, ’g’), cpl.SynType(’AMPA” , 1, ’b’

)))

470 | cinv_cp = cpl.ConnectionPattern(c_layer , c_conn, synTypes=cinv_syns)

471 | cinv_cp.plot ()

472 | pylab .show ()

IG o .

i= @

e B
E

RG

GABAS I c-5- ~ I Vo~ I v~ I

Notice that on each row the synapses are exchanged compared to the original figure above. When displaying
by layer, also the rows have traded place:

474 | cinv_cp.plot (aggrGroups=True)
475 | pylab .show ()

RG

DUSY — Uyywey oy

Totals are not affected:

478 | cinv_cp .plot (aggrGroups=True,aggrSyns=True)
479 | pylab .show ()

IG o
RG .
_—

Inh Exc

489

490

491
492

493

494

496
497

499
500
501

503
504

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200914

Weighting of synapse types in totals mode

Different synapses may have quite different efficacies, so weighting them all with +-1 when computing totals
may give a wrong impression. Different weights can be supplied as second argument to SynTypes(). We return
to the normal placement of synapses and create two examples with very different weights:
cwl_syns = ((cpl.SynType(’AMPA’ , 10, ’b’), cpl.SynType(’'NMDA’ |, 1, g
D),
(cpl.SynType('GABAA’, -2, ’g’), cpl.SynType('GABAB’, -10, ’'b’

)))
cwl_cp = cpl.ConnectionPattern(c_layer , c_conn, synTypes=cwl_syns)
cw2_syns = ((cpl.SynType (’AMPA’ | 1, ’b’), cpl.SynType(’'NMDA’ , 10, ’'g
),
(cpl.SynType('GABA A’, -20, ’'g’), cpl.SynType(’'GABAB’, -1, 'b
D))
cw2_cp = cpl.ConnectionPattern(c_layer , c_conn, synTypes=cw2_syns)

We first plot them both in population mode

cwl_cp.plot(aggrSyns=True)
pylab .show ()

RG
® !
E
[
Inh Exc
cw2_cp.plot(aggrSyns=True)
pylab.show ()
IG
I ee
RG .
==

Finally, we plot them aggregating across groups and synapse models

cwl_cp.plot(aggrGroups=True,aggrSyns=True)
pylab.show ()

IG

RG
®
. :ﬂ

Inh Exc

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200915

506
507 ' cw2_cp.plot(aggrGroups=True,aggrSyns=True)
508 | pylab.show ()

Inh Exc

Alternative colors for synapse patches

Different colors can be specified using any legal color specification. Colors should be saturated, as they will be
mixed with white. You may also provide a colormap explicitly. For this example, we use once more normal
placement and weights. As all synapse types are shown in layer mode, we use that mode for display here.
517 ' cc_syns = ((cpl.SynType(’AMPA’ , 1, ’'maroon’), cpl.SynType(’'NMDA’ , 1,
(0.9,0.5,0))),

518 (cpl.SynType("GABA A, -1, 0.7’), cpl.SynType(’GABAB’, 1,
pylab.cm.hsv)))
519 ' cc_cp = cpl.ConnectionPattern(c_layer, c_conn, synTypes=cc_syns)

520 | cc_cp.plotCaggrGroups=True)
521 | pylab .show ()

RG

avea oA [EIIGA A [o

We get the following colors:

AMPA brownish NMDA golden orange GABA_A jet colormap from red (max) to blue (0) GABA_B grey

NB: When passing an explicit colormap, parts outside the mask will be shown to the “bad” color of the
colormap, usually the “bottom” color in the map. To let points outside the mask appear in white, set the bad
color of the colormap; unfortunately, this modifies the colormap.

532 pylab.cm.hsv.set_bad (cpl.colormaps.bad_color)

533 | ccb_syns = ((cpl.SynType(’AMPA’ , 1, ’'maroon’), cpl.SynType('NMDA’ , 1,
(0.9, 0.5, 0.1))),
534 (cpl.SynType('GABAA’, -1, 0.7’), cpl.SynType(’GABAB’, 1,
pylab.cm.hsv)))
535 ccb_cp = cpl.ConnectionPattern(c_layer , c_conn, synTypes=ccb_syns)

536 ccb_cp.plot (aggrGroups=True)
537 | pylab .show ()

550

556

570
571

576
577
578
579
580
581

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200916

IG RG

RG

avre, I vvon [ESA A [Chen o [

Other configuration options

Some more adjustments are possible by setting certain module properties. Some of these need to be set before
ConnectionPattern() is constructed.
Background color for masked parts of each patch

cpl.colormaps.bad_color = ’cyan’

Background for layers

cpl.plotParams.layer_bg = (0.8, 0.8, 0.0)

Resolution for patch computation

cpl.plotParams.n_kern = 5

Physical size of patches: longest egde of largest patch, in mm

cpl.plotParams.patch_size = 40

Margins around the figure (excluding labels)

cpl.plotParams. margins. left = 40
cpl.plotParams. margins.top = 30
cpl.plotParams. margins.bottom = 15
cpl.plotParams.margins.right = 30

Fonts for layer and population labels

import matplotlib.font_manager as fmgr

cpl.plotParams.layer_font = fmgr.FontProperties(family="serif’, weight="bold
', size=’xx—large’)

cpl.plotParams. pop_font = fmgr.FontProperties (’small)

Orientation for layer and population label

cpl.plotParams.layer_orientation = {’sender’: ’vertical’, ’target’: 60}

cpl.plotParams. pop_orientation = {’sender’: ’horizontal’, ’target’: -45}
Font for legend titles and ticks, tick placement, and tick format

cpl.plotParams.legend_title_font = fmgr.FontProperties(family="serif’,
weight="bold’, size=’large’)

cpl.plotParams.legend_tick_font = fmgr.FontProperties(family="sans—serif’,

weight="light’, size=’xx—small’)
cpl.plotParams.legend_ticks = [0,1,2]
cpl.plotParams.legend_tick_format = *%.1f pA’

cx_cp = cpl.ConnectionPattern(c_layer , c_conn)
cx_cp.plot(colorLimits=[0,2])
pylab.show ()

/Users/plesser /Papers/figure-paper/ConnPlotter/docs/connplotter_tutorial.py December 2, 200917

& . I
& /
AMPAT T NMDA[1T > GABA A e GABA_ B[e
0.0

0.0 pA 1.0 pA 2.0pA pA 1.0 pA 2.0pA 0.0 pA 1.0 pA 2.0pA 0.0 pA 1.0 pA 2.0 pA

Several more options are available to control the format of the color bars (they all are members of plotPar:

e legend_location : if 'top’, place synapse name atop color bar

e cbwidth : width of single color bar relative to figure

e margins.colbar : height of lower margin set aside for color bar, in mm
e cbheight : height of single color bar relative to margins.colbar

e cbwidth : width of single color bar relative to figure width

e cbspace : spacing between color bars, relative to figure width

e choffset : offset of first color bar from left margin, relative to figure width

You can also specify the width of the final figure, but this may not work well with on-screen display or here in
pyreport. Width is in mm. Note that left and right margin combined are 70mm wide, so only 50mm are left
for the actual CPT.

596 | cx_cp.plot(fixedWidth=120)

597 | pylab .show ()

RG IG

o
& <
L | B
E
- Bt
Q& s

