
Introducing Objective-C Performance

Compiling Smalltalk to fast native Code

David Chisnall

February 5, 2012



Introducing Objective-C Performance

Objective-C: C in Smalltalk Objects

• Created by Brad Cox and Tom Love in 1986 to package C
libraries in Smalltalk-like classes

• Smalltalk object model

• C code in methods, message passing between objects

• Rich set of standard class libraries

Author's Note
Comment
A little bit of background to start with to explain how I became interested in Smalltalk. The Objective-C design philosophy was that programmers would be separated into categories. Some would build components, some would assemble components into complete systems. C was to be used for building the components, a Smalltalk-like language for assembling them.



Introducing Objective-C Performance

The Compiler and the Runtime

• The compiler generates calls to functions in the runtime library

• All Smalltalk-like features are implemented by runtime calls

• Calls to C libraries have the same cost as calling them from C

• Can incrementally deploy Objective-C code with C/C++
libraries

• The same model can be used for Smalltalk

Author's Note
Comment
Objective-C is a hybrid language, with C and a Smalltalk dialect as subsets. The C subset means that you can trivially wrap C libraries in Objective-C. The library-based approach means that the metaobject protocol is exposed to programmers. Anything that the Objective-C compiler does, with regard to the object model, you can do yourself.



Introducing Objective-C Performance

Pragmatic Smalltalk

• Dialect of Smalltalk used by Étoilé

• Implements Smalltalk-80 language, but not the standard
libraries

• Compiles to native code (JIT or static compiler)

• Emits code ABI-compatible with Objective-C

Author's Note
Comment
Objective-C is like Smalltalk, but it isn't Smalltalk. It does expose a Smalltalk object model though, and we can use that in a real Smalltalk implementation. Because there's already a load of Objective-C code (and, since C is a subset of Objective-C, this means all C libraries are Objective-C code), we can use them directly. For example, we don't need to implement the core collection classes, because the Objective-C Foundation library provides them, along with filesystem interaction and an event loop. The Application Kit provides GUI services.



Introducing Objective-C Performance

Compiler Architecture

LanguageKit

Smalltalk Parser

EScript Parser

Interpreter

LLVM Optimiser JIT

Clang (Objective-C)

LLVM Optimiser

LLVM Linker / Optimiser Native Linker

Executable

Author's Note
Comment
By using LLVM, we can do some really useful things, like automatically inline Objective-C code into Smalltalk code, and vice versa. We also get to share the optimisation pipeline with the Objective-C front end. Most of the optimisations that I'll talk about later are implemented as LLVM transforms, so we can use them in both Objective-C and Smalltalk. The fact that we can do optimisations after linking means that we can do analysis across the whole of C/C++/Objective-C/Smalltalk programs, which can give some significant performance improvements. Using the same ABI means that a brand new Smalltalk implementation begins life with thousands of existing classes for developers to use.



Introducing Objective-C Performance

Execution Architecture

Kernel

libc

C/C++ Libraries

X11

libobjc

GNUstep Foundation

GNUstep AppKit

ObjC Frameworks

GNUstep AppKit

ObjC ApplicationsSmalltalk Applications

SmalltalkSupport

LanguageKitRuntime

Author's Note
Comment
LanguageKit and the Smalltalk front end each add a small extra runtime library, adding some features on top of the Objective-C runtime (like support for block returns), but most of the code is common to Smalltalk and Objective-C. 



Introducing Objective-C Performance

LanguageKit

• AST for representing Smalltalk-like languages

• Interpreter for directly executing the AST

• LLVM-based code generation back end for compiling

• Written in Objective-C



Introducing Objective-C Performance

Statically Compiled Smalltalk

• Each method is compiled to a function with receiver and
selector as first two arguments

• Each class is a structure with a specific layout containing
introspection information



Introducing Objective-C Performance

Compiling Smalltalk: The Hard Bits

• Small integers

• Blocks

• Non-local returns

• Memory management

Author's Note
Comment
The reason that most Smalltalk implementations have used a VM is that it makes it easy. There are several things in Smalltalk that are hard for a native compiler to do, and we'll look at each one over the next few slides.



Introducing Objective-C Performance

Small Objects

• Objects hidden in pointers (e.g. small integers)

• Very common operations implemented as (hand optimised) C
functions

• Inlined during compilation

• Very fast: almost the same speed as C integer arithmetic -
Fibonacci benchmark ran the same speed as GCC 4.2.1

Author's Note
Comment
Object pointers are just pointers. Small integers are hidden inside pointers (giving a 31-bit signed integer on 32-bit platforms). We have some very fast code for doing basic arithmetic on these values. The Fibonacci benchmark shows a nice example of the advantage of Smalltalk over Objective-C - the Smalltalk version suddenly becomes much slower than the Objective-C version for sufficiently large inputs, but the Objective-C version has overflowed and is now producing the wrong result. In 64-bit mode, we store a few other things in pointers: two double-precision floating point representations, one borrowed from Cincom, one from Smalltalk/X, and also short strings, up to 7 ASCII characters. These are very useful for things like keys in property list or JSON dictionaries, and also for path components.



Introducing Objective-C Performance

Blocks

• Objective-C now supports blocks

• LanguageKit uses the same ABI

• Smalltalk and Objective-C blocks can be used interchangeably.

Author's Note
Comment
Every bound variable is accessed via indirection and allocated on the stack. If the block is copied to the heap, then so is the bound variable, and the forwarding pointers are updated. Memory management for bound variables happens via some helper functions that the compiler emits for each block. Smalltalk blocks are instances of an _NSBlock subclass and can be used from Objective-C in the same way as Objective-C blocks.



Introducing Objective-C Performance

Non-Local Returns

• Returns from blocks

• Ugly feature, should never have been allowed in the language

• Implemented using same mechanism as exceptions (DWARF
stack unwinding)

• Very slow, but offset by inlining common operations (e.g.
ifTrue:) so that they don’t actually use this mechanism

• If you’re not mixing with C code, could be faster...



Introducing Objective-C Performance

Memory Management

• Objective-C can use tracing GC or reference counting

• LanguageKit supports GC or automatic reference counting
(ARC)

• Optimisation passes remove redundant retain / release
operations in ARC mode.

Author's Note
Comment
ARC also provides a much better memory model for Objective-C, with a clean separation between the Smalltalk and Objective-C memory models. With ARC, we just emit calls to retain / release functions in the front end, and the optimiser removes superfluous ones (for example, if it can prove that another object holds a reference to something, it can elide all reference count operations).



Introducing Objective-C Performance

Sending Messages to C

Writing a method just to call a C function is cumbersome (and
slow!)�
"Smalltalk code:"

C sqrt: 42.

C fdim: {60. 12}.

C NSLocation: l InRange: r. 	� �
Generates exactly the same code as:�
// C code

sqrt (42);

fdim(60, 12);

NSLocationInRange(l, r); 	� �
No bridging code, no custom wrappers, just native function calls in
the compiled code.

Author's Note
Comment
This works by parsing the headers using SourceCodeKit, which uses libclang. The parser uses exactly the same front end as the Objective-C compiler. We use a small transform to turn message sends to the C pseudo-object into function calls. There's no late binding here - these calls are looked up at compile time and we emit call instructions directly referencing the C functions. If you look at the generated assembly on x86-64, you will see callq fdim in the middle of your method. If we're doing link-time optimisation, then we can even inline C functions into Smalltalk methods...



Introducing Objective-C Performance

What Makes Things Slow?

• Small integer arithmetic

• Boxing

• Dynamic message lookup

• Memory management operations

Author's Note
Comment
There's no such thing as a slow language, only a slow implementation of a language. There are, however, language features that make it difficult to implement a language fast.



Introducing Objective-C Performance

Small Objects Support in Libobjc

• Allows Smalltalk SmallInts to be returned to ObjC code (no
boxing required)

• Removes the need for LanguageKit to add conditionals around
every message send

• Approximately 40% reduction in code size

• Smaller code means better instruction cache usage

Author's Note
Comment
Without runtime support for small objects, we had to make sure that we didn't leak them to Objective-C code, which would treat them as pointers and dereference them. We also had to add a branch before every message send checking for small integers. Now, we can skip both of those and use them just like any other objects. For performance, we do still treat a few small integer messages specially. Things like + and / are translated into calls to C functions, so they can be inlined.



Introducing Objective-C Performance

Cost of Small Ints

• Around 5-10% on the cost of a message send

• Offset by smaller code, better cache usage

• Offset by fewer memory allocations / deallocations

• On 64-bit platforms we also have two flavours of double and
7-character ASCII strings inside pointers.



Introducing Objective-C Performance

Lookup Caching

• New lookup function returns a pointer to a structure

• Structure contains a version

• Version incremented if the method is replaced

• Safe automatic caching now possible

• Optimisation pass caches all lookups in loops and to classes

Author's Note
Comment
Idea shamelessly stolen from Self, although the implementation differs - it's much easier to do in a VM. The biggest win for this is in a loop optimisation pass, where we can do a single lookup and cache the result on the stack. Polymorphic inline caching is rarely worthwhile - the cost of 2-3 cache checks is more than the cost of a real method lookup. This is even more true with the recent improvements to message sending speed.



Introducing Objective-C Performance

Optimising Lookup More

• Traditional lookup is two phases - return the function, call the
function

• Better version would talk-call the method

• Not possible to implement in C, requires some assembly code.



Introducing Objective-C Performance

Message Sending

Message sending loop on an 800MHz ARM Cortex A8

0 1 2 3 4 5 6
seconds

Direct Function Call

Two-state lookup

auto-cached lookup

Assembly lookup

Approximately 23,000,000 messages per second on a slow machine.

Author's Note
Comment
Some benchmarks of the current version. This shows the classical message send cost, the cost with inline caching, and the cost of the assembly implementation. 



Introducing Objective-C Performance

Speculative Inlining

• C can insert copies of functions where they are used

• Smalltalk message sends may map to different methods

• But we can guess one...

• ...inline it...

• ...and wrap it in a test to see if we guessed right

• Lots of other optimisations (e.g. constant propagation)
benefit from inlining!

Author's Note
Comment
Inlining is a big performance win for C (and for C++). Saving the call overhead is nice, but it also allows a lot of extra optimisations, like constant propagation and common subexpression elimination, to reduce code that is in multiple functions. With Objective-C, we can't inline methods, because we can't know exactly which method will actually be called for a given messages send. It turns out, however, that we can quite often guess correctly (with profiling, it's easy to guess correctly most times) and can then do speculative inlining. We bracket the inlined call with a test that checks if we've really done the correct thing.



Introducing Objective-C Performance

Type Inference / Feedback

• Moving between integer and float registers is expensive
(pipeline stall on ARM)

• If you’re doing a lot of floating-point arithmetic, then
determining the

Author's Note
Comment
We don't do this much yet. In a future version, we'll make all of the boxing and unboxing a call to a runtime function, then the LLVM code flow analysis will make it easy to see if we're boxing and then unboxing the same value and let us remove the redundant operations. We do this for reference count manipulation already.



Introducing Objective-C Performance

Smalltalk Requires Garbage Collection

• General solutions are always slower than specific ones in
microbenchmarks

• Usually this is amortised because no one writes a good
implementation everywhere

• How do we do GC fast?



Introducing Objective-C Performance

Objective-C Memory Management

Traditionally uses manual reference counting + autorelease pools,
now automatically inserted by compiler.
Advantages:

• Relatively low overhead.

• Deterministic overhead.

• No overhead for stack assignments due to autorelease pools

Disadvantages:

• Cycles leak unless you manually break them.

• Relatively expensive to do heap (e.g. ivar) assignments



Introducing Objective-C Performance

Garbage Collection 101

The problem: Some of these objects are no longer needed. Which
ones?



Introducing Objective-C Performance

Approach 1: Tracing

• Mark some locations as
roots (stack, globals)



Introducing Objective-C Performance

Approach 1: Tracing

• Mark some locations as
roots (stack, globals)

• Follow all pointers,
colouring objects as you
go.



Introducing Objective-C Performance

Approach 1: Tracing

• Mark some locations as
roots (stack, globals)

• Follow all pointers,
colouring objects as you
go.

• Delete everything you
didn’t visit.



Introducing Objective-C Performance

Approach 1: Tracing

Advantages

• No problems with cycles.

• Needs to track every object location (one pointer per object)
to free the unvisited ones.

Disadvantages:

• Tracing the whole of memory can take a long time, longer the
more memory you use. Generations offset this.

• Doesn’t play well with swap. All RAM is working set, must be
swapped in for a full sweep.

• Doesn’t play well with CPU cache. Data cache fills up with
objects that are not accessed by anything other than the GC.

• Nondeterministic performance.



Introducing Objective-C Performance

Approach 2: Reference Counting

• Keep a count of all
pointers to an object.

1

1 1

1
2

1

1

1

1

1

1



Introducing Objective-C Performance

Approach 2: Reference Counting

• Keep a count of all
pointers to an object.

• Delete objects when their
reference count hits 0.

0

0 1

1
1

1

1

0

0

1

0



Introducing Objective-C Performance

Approach 2: Reference Counting

• Keep a count of all
pointers to an object.

• Delete objects when their
reference count hits 0.

• Leak cycles.

0

0 1

1
1

1

1

0

0

1

0



Introducing Objective-C Performance

Approach 2a: Reference Counting and Cycle Detection

If an object is released, but not freed, follow all pointers from it
and see if you find enough pointers back to account for its
reference count, delete it if you do.
Advantages:

• Deterministic performance.

• Good locality of reference.

• Scales well to NUMA systems.

Disadvantages:

• Overhead on every (heap) assignment.

Author's Note
Comment
Deferred cycle detection: wait or a bit and see if the object's reference count has been incremented or decremented since it was marked for checking. If it's been incremented, it's been decremented, it might have been freed.


	Introducing Objective-C
	LanguageKit

	Performance
	Improving Performance


