Available opacity species

Line absorbers

Please see the Installation section for how to obtain and use the opacities listed below. For adding more opacity species not listed here, please see Adding opacities, among them how to plug-and-play install the Exomol opacities calculated in the pRT format, available from the Exomol website. The references of the non-contributed opacities can be found in Mollière et al. (2019).

Line absorbers, low resolution mode ("c-k", with \(\lambda/\Delta\lambda=1000\))

Important

In low resolution mode ("c-k"), most of the molecular opacitites are calculated considering only the main isotopologue. This is different only for CO and TiO, where the contribution of all isotopologues is considered. For CO because the secondary isotopes of carbon, for example \(\rm ^{13}C\), are quite abundant when compared to the main isotope, that is \(\rm ^{12}C/^{13}C\sim 100\), and because CO has very strong and sparse lines. Not including these lines therefore has a noticeable effect already at low resolution. For TiO all isotopologues are included because the relative ratios between the Ti isotopes are quite large. Apart from these two species, the main isotopologue treatment compared very well to codes including all isotopologues, at this low resolution, see Baudino et al. (2017).

Species name

Required in abuncance dictionary

Description

C2H2

C2H2

Main isotopologue, HITRAN

CH4

CH4

Main isotopologue, Exomol

CO

CO

Main isotopologue, HITEMP/Kurucz

CO2

CO2

Main isotopologue, HITEMP

CO_all_iso

CO_all_iso

All isotopologues, HITEMP/Kurucz

H2

H2

Main isotopologue, HITRAN

H2O

H2O

Main isotopologue, HITEMP

H2S

H2S

Main isotopologue, HITRAN

HCN

HCN

Main isotopologue, Exomol

HDO

HDO

Main isotopologue, HITRAN

K

K

Main isotopologue, VALD, Allard wings

K_lor_cut

K_lor_cut

Main isotopologue, VALD, Lorentzian wings

NH3

NH3

Main isotopologue, Exomol

NH3_HITRAN

NH3_HITRAN

Main isotopologue, HITRAN

Na

Na

Main isotopologue, VALD, Allard wings

Na_lor_cut

Na_lor_cut

Main isotopologue, VALD, Lorentzian wings

O3

O3

Main isotopologue, HITRAN

OH

OH

Main isotopologue, HITEMP

PH3

PH3

Main isotopologue, Exomol

PH3_HITRAN

PH3_HITRAN

Main isotopologue, HITRAN

SiO_main_iso

SiO_main_iso

Main isotopologue, Exomol

TiO

TiO

All isotopologues, B. Plez

VO

VO

Main isotopologue, B. Plez

FeH

FeH

Main isotopologue, Exomol

Contributed opacities, low resolution mode

Please make sure to install the lastest version of petitRADTRANS when using the contributed opacities below, otherwise the code will not see, and hence not use, the high temperature points (T > 3000 K) of the opacities.

Name

Abund. dict.

Ref. line list / broad.

P (bar), T (K) range

Contributor

Al

Al

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlII

AlII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlIII

AlIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlIV

AlIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlV

AlV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlVI

AlVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

B

B

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BII

BII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BIII

BIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Be

Be

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BeII

BeII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Ca

Ca

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CaII

CaII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

C

C

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CII

CII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CIII

CIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CIV

CIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Cr

Cr

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Fe

Fe

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

FeII

FeII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KII

KII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KIII

KIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KIV

KIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KV

KV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KVI

KVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Li

Li

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Mg

Mg

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgII

MgII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgIII

MgIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgIV

MgIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgV

MgV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgVI

MgVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

N

N

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NII

NII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NIII

NIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NIV

NIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NV

NV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaII

NaII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaIII

NaIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaIV

NaIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaV

NaV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaVI

NaVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Si

Si

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

SiII

SiII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Ti

Ti

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

TiII

TiII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

V

V

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

VII

VII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Y

Y

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Line absorbers, high resolution mode ("lbl", with \(\lambda/\Delta\lambda=10^6\))

Species name

Required in abundance dictionary

Description

C2H2_main_iso

C2H2_main_iso

Main isotopologue, HITRAN

CH4_212

CH4_212

\(\rm CH_3D\), HITRAN

CH4_main_iso

CH4_main_iso

Main isotopologue, Exomol

CO2_main_iso

CO2_main_iso

Main isotopologue, HITEMP

CO_27

CO_27

\(\rm ^{12}C^{17}O\), HITRAN

CO_28

CO_28

\(\rm ^{12}C^{18}O\), HITRAN

CO_36

CO_36

\(\rm ^{13}C^{16}O\), HITRAN

CO_37

CO_37

\(\rm ^{13}C^{17}O\), HITRAN

CO_38

CO_38

\(\rm ^{13}C^{18}O\), HITRAN

CO_all_iso

CO_all_iso

All isotopologues

CO_main_iso

CO_main_iso

Main isotopologue, HITEMP

H2O_162

H2O_162

\(\rm HDO\), HITRAN

H2O_171

H2O_171

\(\rm H_2 \ ^{17}O\), HITRAN

H2O_172

H2O_172

\(\rm HD^{17}O\), HITRAN

H2O_181

H2O_181

\(\rm H_2 \ ^{18}O\), HITRAN

H2O_182

H2O_182

\(\rm HD^{18}O\), HITRAN

H2O_main_iso

H2O_main_iso

Main isotopologue, HITEMP

H2S_main_iso

H2S_main_iso

Main isotopologue, HITRAN

H2_12

H2_12

\(\rm HD\), HITRAN

H2_main_iso

H2_main_iso

Main isotopologue, HITRAN

HCN_main_iso

HCN_main_iso

Main isotopologue, Exomol

K

K

Main isotopologue, VALD, Allard wings

NH3_main_iso

NH3_main_iso

Main isotopologue, Exomol

Na

Na

Main isotopologue, VALD, Allard wings

O3_main_iso

O3_main_iso

Main isotopologue, HITRAN

PH3_main_iso

PH3_main_iso

Main isotopologue, Exomol

SiO_main_iso

SiO_main_iso

Main isotopologue, Exomol

TiO_all_iso

TiO_all_iso

All isotopologues, B. Plez

TiO_46_Plez

TiO_46_Plez

\(\rm \ ^{46}TiO\), B. Plez

TiO_47_Plez

TiO_47_Plez

\(\rm \ ^{47}TiO\), B. Plez

TiO_48_Plez

TiO_48_Plez

\(\rm \ ^{48}TiO\), B. Plez

TiO_49_Plez

TiO_49_Plez

\(\rm \ ^{49}TiO\), B. Plez

TiO_50_Plez

TiO_50_Plez

\(\rm \ ^{50}TiO\), B. Plez

TiO_46_Exomol_McKemmish

TiO_46_Exomol_McKemmish

\(\rm \ ^{46}TiO\), Exomol, McKemmish et al. (2019)

TiO_47_Exomol_McKemmish

TiO_47_Exomol_McKemmish

\(\rm \ ^{47}TiO\), Exomol, McKemmish et al. (2019)

TiO_48_Exomol_McKemmish

TiO_48_Exomol_McKemmish

\(\rm \ ^{48}TiO\), Exomol, McKemmish et al. (2019)

TiO_49_Exomol_McKemmish

TiO_49_Exomol_McKemmish

\(\rm \ ^{49}TiO\), Exomol, McKemmish et al. (2019)

TiO_50_Exomol_McKemmish

TiO_50_Exomol_McKemmish

\(\rm \ ^{50}TiO\), Exomol, McKemmish et al. (2019)

VO

VO

Main isotopologue, B. Plez

FeH_main_iso

FeH_main_iso

Main isotopologue, Exomol

Contributed opacities, high resolution mode

Please make sure to install the lastest version of petitRADTRANS when using the contributed opacities below, otherwise the code will not see, and hence not use, the high temperature points (T > 3000 K) of the opacities.

Name

Abund. dict.

Ref. line list / broad.

P (bar), T (K) range

Contributor

Al

Al

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlII

AlII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlIII

AlIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlIV

AlIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlV

AlV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

AlVI

AlVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

B

B

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BII

BII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BIII

BIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Be

Be

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

BeII

BeII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Ca

Ca

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CaII

CaII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

C

C

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CII

CII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CIII

CIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

CIV

CIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Cr

Cr

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Fe

Fe

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

FeII

FeII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KII

KII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KIII

KIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KIV

KIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KV

KV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

KVI

KVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Li

Li

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Mg

Mg

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgII

MgII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgIII

MgIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgIV

MgIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgV

MgV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

MgVI

MgVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

N

N

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NII

NII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NIII

NIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NIV

NIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NV

NV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaII

NaII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaIII

NaIII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaIV

NaIV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaV

NaV

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

NaVI

NaVI

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Si

Si

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

SiII

SiII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Ti

Ti

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

TiII

TiII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

V

V

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

VII

VII

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Y

Y

Kurucz, \(\gamma_{\rm nat+VdW},\sigma_{\rm therm}\)

\(10^{-6}\)-\(10^{3}\), 80-4000

K. Molaverdikhani

Cloud opacities

Species name

Required in abundance dictionary

Description

Al2O3(c)_cm

Al2O3(c)

Crystalline, Mie scattering (spherical)

Al2O3(c)_cd

Al2O3(c)

Crystalline, DHS (irregular shape)

Fe(c)_am

Fe(c)

Amorphous, Mie scattering (spherical)

Fe(c)_ad

Fe(c)

Amorphous, DHS (irregular shape)

Fe(c)_cm

Fe(c)

Crystalline, Mie scattering (spherical)

Fe(c)_cd

Fe(c)

Crystalline, DHS (irregular shape)

H2O(c)_cm

H2O(c)

Crystalline, Mie scattering (spherical)

H2O(c)_cd

H2O(c)

Crystalline, DHS (irregular shape)

KCL(c)_cm

KCL(c)

Crystalline, Mie scattering (spherical)

KCL(c)_cd

KCL(c)

Crystalline, DHS (irregular shape)

Mg05Fe05SiO3(c)_am

Mg05Fe05SiO3(c)

Amorphous, Mie scattering (spherical)

Mg05Fe05SiO3(c)_ad

Mg05Fe05SiO3(c)

Amorphous, DHS (irregular shape)

Mg2SiO4(c)_am

Mg2SiO4(c)

Amorphous, Mie scattering (spherical)

Mg2SiO4(c)_ad

Mg2SiO4(c)

Amorphous, DHS (irregular shape)

Mg2SiO4(c)_cm

Mg2SiO4(c)

Crystalline, Mie scattering (spherical)

Mg2SiO4(c)_cd

Mg2SiO4(c)

Crystalline, DHS (irregular shape)

MgAl2O4(c)_cm

MgAl2O4(c)

Crystalline, Mie scattering (spherical)

MgAl2O4(c)_cd

MgAl2O4(c)

Crystalline, DHS (irregular shape)

MgFeSiO4(c)_am

MgFeSiO4(c)

Amorphous, Mie scattering (spherical)

MgFeSiO4(c)_ad

MgFeSiO4(c)

Amorphous, DHS (irregular shape)

MgSiO3(c)_am

MgSiO3(c)

Amorphous, Mie scattering (spherical)

MgSiO3(c)_ad

MgSiO3(c)

Amorphous, DHS (irregular shape)

MgSiO3(c)_cm

MgSiO3(c)

Crystalline, Mie scattering (spherical)

MgSiO3(c)_cd

MgSiO3(c)

Crystalline, DHS (irregular shape)

Na2S(c)_cm

Na2S(c)

Crystalline, Mie scattering (spherical)

Na2S(c)_cd

Na2S(c)

Crystalline, DHS (irregular shape)

SiC(c)_cm

SiC(c)

Crystalline, Mie scattering (spherical)

SiC(c)_cd

SiC(c)

Crystalline, DHS (irregular shape)

Rayleigh scatterers

Species name

Required in abundance dictionary

H2

H2

He

He

H2O

H2O

CO2

CO2

O2

O2

N2

N2

CO

CO

CH4

CH4

Continuum opacity sources

Species name

Required in abundance dictionary

Descripton

H2-H2

H2

Collision induced absorption (CIA)

H2-He

H2, He

Collision induced absorption (CIA)

N2-N2

N2

Collision induced absorption (CIA)

O2-O2

O2

Collision induced absorption (CIA)

H-

H, H-, e-

H- bound-free and free-free opacity