
How to avoid NaN gradients when using
`tf.where` to select finite results.
date: 2017-feb-7 [2019-jul-23]
owner: jvdillon

Abstract
So you have a NaN in your gradient and don't know why? Assuming you use `tf.where`,
`tf.minimum`, `tf.maximum`, this note might help!

Tl;dr: Instead of this: tf.where(x_ok, f(x), safe_f(x))

Do this: tf.where(x_ok, f(tf.where(x_ok, x, safe_x)), safe_f(x))

Both give the same result. Only the latter gives the correct gradient. 1

(Keep reading if the "tl;dr" doesn't make sense!)

Detailed Example
Let's develop our intuition of the problem by considering a specific example. Suppose you wish
to differentiate the following function:

 .

A naive implementation results in NaNs in the gradient, i.e.,

import tensorflow.compat.v2 as tf

import tensorflow_probability as tfp

tf.enable_v2_behavior()

f = lambda x: tf.where(x < 1., 0., 1. / x)
x = tf.constant(0.)
tfp.math.value_and_gradient(f, x)[1]
==> nan ...bah.

1 Arguably. Don't ask.

- 1 -

https://www.codecogs.com/eqnedit.php?latex=f%28x%29%20%3D%20%5Cbegin%7Bcases%7D%20%5Cfrac%7B1%7D%7Bx%7D%20%26%20x%5Cge%201%20%5C%5C%200%20%26%20x%20%3C%201%20%5Cend%7Bcases%7D

The basic pattern for avoiding NaN gradients when using `tf.where` is to call `tf.where` twice. 2

The innermost `tf.where` ensures that the result `f(x)` is always finite. The outermost `tf.where`
ensures the correct result is chosen. For the running example, the trick plays out like this:

def safe_f(x):
 safe_x = tf.where(tf.equal(x, 0.), 1., x) # inner tf.where
 return tf.where(x < 1., 0., 1. / safe_x) # outer tf.where; just like f(x)

But did it work?

x = tf.constant(0.)
tfp.math.value_and_gradient(safe_f, x)[1]
==> 0.0 ...yay! double-where trick worked.

General Recipe
1. Use an inner `tf.where` to ensure the function has no asymptote.

I.e., alter the input to the inf generating function such that no inf can be created.
2. Use a second `tf.where` to always select the valid code-path.

I.e., implement the mathematical condition as you would "normally", i.e., the "naive"
implementation.

In Python code, the recipe is:

Instead of this: tf.where(x_ok, f(x), alt_f(x))
Do this: tf.where(x_ok, f(tf.where(x_ok, x, safe_x)), alt_f(x))

Can we do better?
With luck, sometimes things work out even more cleanly. For example,

def cross_entropy(x, y, axis=-1):
 safe_y = tf.where(tf.equal(y, 0.), tf.ones_like(y), y)
 return -tf.reduce_sum(x * tf.math.log(safe_y), axis)

def entropy(x, axis=-1):
 return cross_entropy(x, x, axis)

Here we only needed one `tf.where` because the `x *` acts like an outer `tf.where`.

But did it work?

2 The "double-tf.where" trick always works, assuming you have access to the data before it
becomes +/- inf.

- 2 -

x = tf.constant([0.1, 0.2, 0., 0.7])
e = entropy(x)
==> 0.80181855

tfp.math.value_and_gradient(entropy, x)[1]
==> [1.30258512, 0.60943794, 0., -0.64332503] ...yay! no nan.

For additional discussion, see this StackOverflow post.

- 3 -

https://stackoverflow.com/questions/33712178/tensorflow-nan-bug/42497444#42497444

