
Description of the experimental setup

1 Introduction
This document contains technical details about the experiments held in order to compare out-of-the-box

performance of different gradient boosting methods on the tasks of binary classification. The goal of the description is
to clarify the design of the experiments and guarantee the fairness of comparison and high reliability of the results.

We compare CatBoost against popular gradient boosting libraries: LightGBM, XGBoost, H2O. For each algorithm
we calculate 2 metrics:

• Default. Each of the algorithms has its own specific set of parameters, for which the default values are proposed
by their authors. We use these values and tune only number of trees.

• Tuned. We tune all the key parameters of an algorithm using hyperopt library in the mode algo=tpe.suggest
(i.e., by the sequential Tree Parzen Estimator algorithm).

We use 5-fold cross-validation to tune all the parameters, including number of trees. We fit the model, which
performs best on validation, and apply this tuned model to test set.

We guarantee reproducibility of all the experiments by providing docker image with all necessary data and scripts.

2 Datasets
The experiments were performed on the following datasets.

Dataset name Link Instances Features Description
adult link 48842 15 Prediction task is to determine whether a person

makes over 50K a year. Extraction was done by
Barry Becker from the 1994 Census database. A set
of reasonably clean records was extracted using the
following conditions: (AAGE>16) and (AGI>100) and
(AFNLWGT>1) and (HRSWK>0)

amazon link 32769 10 Data from the Kaggle Amazon Employee challenge.
appet link 50000 231 Small version of KDD 2009 Cup data.
click link 399482 12 This data is derived from the 2012 KDD Cup. The data

is subsampled to 1% of the original number of instances,
downsampling the majority class (click=0) so that the
target feature is reasonably balanced (5 to 1). The data
is about advertisements shown alongside search results
in a search engine, and whether or not people clicked on
these ads. The task is to build the best possible model
to predict whether a user will click on a given ad.

internet link 10108 69 Binarized version of the original data set. The multi-
class target feature is converted to a two-class nominal
target feature by re-labeling the majority class as
positive (’P’) and all others as negative (’N’). Originally
converted by Quan Sun.

kdd98 link 191260 479 Dataset KDD98 challenge. The goal is to estimate the
return from a direct mailing in order to maximize
donation profits. This dataset represents problem of
binary classification - whether there was a response to
mailing. The data is subsampled to 50% of the original
number of instances.

kddchurn link 50000 231 Small version of KDD 2009 Cup data.
kick link 72983 36 Data from "Don’t Get Kicked!" Kaggle challenge.
upsel link 50000 231 Small version of KDD 2009 Cup data.

1



3 Preprocessing
As the goal of the study is to compare out-of-the-box performance of algorithms themselves, no complex

preprocessing (elimination of imbalanced classes, feature selection etc.) takes place. The simplest methods of imputation
are used for both numeric and categorical variables:

• For categorical variables missing values are replaced with special value, i.e. we treat missing values as a special
category

• For numeric variables missing values are be replaced with zeros, and a binary dummy feature for each imputed
feature is added.

4 Preparation of Splits
Each dataset was split into training set (80%) and test set (20%). We denote them as (Xfull_train, yfull_train) and

(Xtest, ytest). For each dataset column numbers with categorical features are known.
We use 5-fold cross-validation to tune parameters of each model on training set. Accordingly,

(Xfull_train, yfull_train) is split into 5 equally sized parts (X1, y1), . . . , (X5, y5) (for classification tasks the sampling
is stratified). These parts are used to construct 5 training and validation sets (Xtrain

i , ytraini ), (Xval
i , yvali ) so that

(Xval
i , yvali ) matches (Xi, yi), and (Xtrain

i , ytraini ) matches ∪j 6=i(Xj , yj).
For each of these pairs, we then preprocess the categorical features as follows. Suppose that there is a training set

(Xtrain, ytrain) and a validation set (Xval, yval). Next, after a random permutation of the objects for j-th categorical
feature and i-th object, we calculate the 2 numbers aij and bij (in the formulae [boolean expression] is the indicator,
it equals 1 if the expression is true and 0, in the other case):

aij =

i−1∑
k=1

[Xtrain
ij = Xtrain

kj ]ytrainkj ,

bij =

i−1∑
k=1

[Xtrain
ij = Xtrain

kj ]

After that the categorical features in the training set are replaced by numeric ones using the following formula.

Xtrain
ij =

aij + 1

bij + 2
.

The next step is to replace the categorical features in the validation set. To do this, for j-th categorical feature and
i-th object, the 2 numbers cij and dij are calculated the same way:

cij =
∑
k

[Xval
ij = Xtrain

kj ]ytrainkj ,

dij =
∑
k

[Xval
ij = Xtrain

kj ]

Now the cat features in the validation set are replaced by numeric ones using the following formula.

Xval
ij =

cij + 1

dij + 2
.

Finally, for the original samples (Xfull_train, yfull_train) and (Xtest, ytest), we replace the categorical features with
numerical ones following the same method as for (Xtrain, ytrain) and (Xval, yval).

5 Parameter Tuning Design
As a result of data preparation steps, we have:

• 5 pairs of samples (training and validation) that contain only numeric values which are used to find the best
parameters via 5-fold cross-validaton

• pair of samples (full training, test) that contains only numeric values to fit the model with best parameters on
the full training set and get predictions for the test set

2



To estimate quality we use LogLoss.
In the process of parameter tuning, we perform exhaustive search for number of trees, having fixed all other

parameters.
The maximum number of trees for all algorithms is 5000.
For a specific set of parameters quality metrics on the validation sets are calculated for each of the 5 folds when

adding the next tree. The result is five 5000-dimensional vectors that are averaged into one vector, which is used for
getting the argmax or argmin. The resulting number is the optimal number of trees for the given set of parameters.
I.e. having all other parameters fixed, we find optimal number of trees by maximizing average quality on 5 folds.

In total, this process is repeated for 50 different parameter sets, and the parameters with the best quality are
selected. After obtaining the best parameters, the model is trained on the preprocessed (Xfull_train, yfull_train). With
this model the final metric value for the pre-processed test set (Xtest, ytest) is calculated.

6 Default Parameters
A list of default parameters for each algorithm:

XGBoost.

• ’eta’: 0.3

• ’max_depth’: 6

• ’subsample’: 1.0

• ’colsample_bytree’: 1.0

• ’colsample_bylevel’: 1.0

• ’min_child_weight’: 1

• ’alpha’:0

• ’lambda’: 1

• ’gamma’: 1

LightGBM.

• ’learning_rate’: 0.1

• ’num_leaves’ : 127

• ’feature_fraction’: 1.0

• ’bagging_fraction’: 1.0

• ’min_sum_hessian_in_leaf’: 10

• ’min_data_in_leaf’: 100

• ’lambda_l1’: 0

• ’lambda_l2’: 0

H2OGradientBoosting.

• ’learn_rate’: 0.1

• ’max_depth’: 5

• ’sample_rate’: 1.0

• ’col_sample_rate’: 1.0

• ’col_sample_rate_change_per_level’: 1

• ’col_sample_rate_per_tree’: 1

• ’min_split_improvement’: 1e− 5

3



• ’min_rows’: 10

• ’histogram_type’: auto

CatBoost.

• ’learning_rate’: 0.03

• ’depth’ : 6

• ’fold_len_multiplier’: 2

• ’rsm’: 1.0

• ’border_count’: 128

• ’ctr_border_count’: 16

• ’l2_leaf_reg’: 3

• ’leaf_estimation_method’: ’Newton’

• ’gradient_iterations’: 10

• ’ctr_description’: [’Borders’, ’CounterMax’]

• ’random_strength’: 1

• ’one_hot_max_size’: 0

• ’bagging_temperature’: 1

7 Parameter Tuning
Parameters for XGBoost, LightGBM and CatBoost were tuned using python hyperopt library. Parameters for

H2OGradientBoosting were tuned using h2o.grid (randomized grid search) in R interface. Below is a list of tuned
parameters and the distributions they were selected from for each algorithm:

XGBoost.

• ’eta’: Log-uniform distribution [e−7, 1]

• ’max_depth’: Discrete uniform distribution [2, 10]

• ’subsample’: Uniform [0.5, 1]

• ’colsample_bytree’: Uniform [0.5, 1]

• ’colsample_bylevel’: Uniform [0.5, 1]

• ’min_child_weight’: Log-uniform distribution [e−16, e5]

• ’alpha’: Mixed: 0.5 * Degenerate at 0 + 0.5 * Log-uniform distribution [e−16, e2]

• ’lambda’: Mixed: 0.5 * Degenerate at 0 + 0.5 * Log-uniform distribution [e−16, e2]

• ’gamma’: Mixed: 0.5 * Degenerate at 0 + 0.5 * Log-uniform distribution [e−16, e2]

LightGBM.

• ’learning_rate’: Log-uniform distribution [e−7, 1]

• ’num_leaves’ : Discrete log-uniform distribution [1, e7]

• ’feature_fraction’: Uniform [0.5, 1]

• ’bagging_fraction’: Uniform [0.5, 1]

• ’min_sum_hessian_in_leaf’: Log-uniform distribution [e−16, e5]

4



• ’min_data_in_leaf’: Discrete log-uniform distribution [1, e6]

• ’lambda_l1’: Mixed: 0.5 * Degenerate at 0 + 0.5 * Log-uniform distribution [e−16, e2]

• ’lambda_l2’: Mixed: 0.5 * Degenerate at 0 + 0.5 * Log-uniform distribution [e−16, e2]

H2OGradientBoosting.

• ’learn_rate’: Log-uniform distribution [e−7, 1]

• ’max_depth’: Discrete uniform distribution [2, 10]

• ’sample_rate’: Uniform [0.5, 1]

• ’col_sample_rate’: Uniform [0.5, 1]

• ’col_sample_rate_change_per_level’: Uniform [0, 2]

• ’col_sample_rate_per_tree’: Uniform [0, 1]

• ’min_split_improvement’: Log-uniform distribution [e−16, 1]

• ’min_rows’: Log-uniform distribution [1, e5]

• ’histogram_type’: Discrete uniform distribution over a set {uniform_adaptive, random, quantiles_global,
round_robin}

CatBoost.

• ’learning_rate’: Log-uniform distribution [e−7, 1]

• ’random_strength’: Discrete uniform distribution over a set {1, 20}

• ’one_hot_max_size’: Discrete uniform distribution over a set {0, 25}

• ’l2_leaf_reg’: Log-uniform distribution [1, 10]

• ’bagging_temperature’: Uniform [0, 1]

• ’gradient_iterations’ : Discrete uniform distribution over a set {1, 10}

8 Versions of the libraries
• xgboost (0.6)

• scikit-learn (0.18.1)

• scipy (0.19.0)

• pandas (0.19.2)

• numpy (1.12.1)

• lightgbm (0.1)

• hyperopt (0.0.2)

• h2o (3.10.4.6)

• R (3.3.3)

5


