CatBoost: unbiased boosting with categorical features

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin

Accepted to NIPS 2018

CatBoost

- A variant of GBDT
- Effectively handles categorical features
- Shows best results on many datasets (compared with MatrixNet, XGBoost, LightGBM)
- Available as an open-source library: https://github.com/catboost/

- Dataset $\mathcal{D} = \{(\mathbf{x}_k, y_k)\}_{k=1..n}$, $\mathbf{x}_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}$
- (\mathbf{x}_k, y_k) i.i.d. from $P(\cdot, \cdot)$

(日) (四) (日) (日) (日)

- Dataset $\mathcal{D} = \{(\mathbf{x}_k, y_k)\}_{k=1..n}$, $\mathbf{x}_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}$
- (\mathbf{x}_k, y_k) i.i.d. from $P(\cdot, \cdot)$
- Looking for $F = \operatorname{argmin}_f \mathcal{L}(f), \ \mathcal{L}(f) := \mathbb{E}(L(y, f(\mathbf{x})))$

A B K A B K

- Dataset $\mathcal{D} = \{(\mathbf{x}_k, y_k)\}_{k=1..n}$, $\mathbf{x}_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}$
- (\mathbf{x}_k, y_k) i.i.d. from $P(\cdot, \cdot)$
- Looking for $F = \operatorname{argmin}_f \mathcal{L}(f), \ \mathcal{L}(f) := \mathbb{E}(L(y, f(\mathbf{x})))$
- Gradient boosting: $F^t = F^{t-1} + \alpha^t h^t$, $h^t = \operatorname{argmin}_{h \in H} \mathcal{L}(F^{t-1} + h)$ (details later)

イロト 不得下 イヨト イヨト

- Dataset $\mathcal{D} = \{(\mathbf{x}_k, y_k)\}_{k=1..n}$, $\mathbf{x}_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}$
- (\mathbf{x}_k, y_k) i.i.d. from $P(\cdot, \cdot)$
- Looking for $F = \operatorname{argmin}_f \mathcal{L}(f), \ \mathcal{L}(f) := \mathbb{E}(L(y, f(\mathbf{x})))$
- Gradient boosting: $F^t = F^{t-1} + \alpha^t h^t$, $h^t = \operatorname{argmin}_{h \in H} \mathcal{L}(F^{t-1} + h)$ (details later)
- $\bullet\,$ In CatBoost, H is a family of oblivious decision trees with limited depth

• • = • • = •

Categorical features

- Have discrete set of values (categories), not comparable with each other
- Cannot be used in binary decision trees directly

Categorical features

- Have discrete set of values (categories), not comparable with each other
- Cannot be used in binary decision trees directly
- One-hot encoding: add binary variables identifying categories
- Problems: large memory requirements and computational cost, weak features

Categorical features

- Have discrete set of values (categories), not comparable with each other
- Cannot be used in binary decision trees directly
- One-hot encoding: add binary variables identifying categories
- Problems: large memory requirements and computational cost, weak features
- Solution: use target-based statistics (TBS) instead
- We replace category x_k^i by some numerical value \hat{x}_k^i

Greedy TBS

$$\hat{x}_{k}^{i} = \frac{\sum_{j=1}^{n} \mathbbm{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j}}{\sum_{j=1}^{n} \mathbbm{1}_{\{x_{j}^{i} = x_{k}^{i}\}}}$$

3

イロト イポト イヨト イヨト

Greedy TBS

$$\hat{x}_{k}^{i} = \frac{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j}}{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}}}$$

Problem: target leakage leads to a conditional shift, i.e., $\hat{x}^i | y$ differs for training and test examples

P1
$$\mathbb{E}(\hat{x}^i|y=v) = \mathbb{E}(\hat{x}^i_k|y_k=v)$$
, where (x_k, y_k) is the k-th training example

A B A A B A

Greedy TBS

$$\hat{x}_{k}^{i} = \frac{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j}}{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}}}$$

Problem: target leakage leads to a conditional shift, i.e., $\hat{x}^i | y$ differs for training and test examples

P1
$$\mathbb{E}(\hat{x}^i|y=v) = \mathbb{E}(\hat{x}^i_k|y_k=v)$$
, where (x_k, y_k) is the k-th training example

Example: *i*-th feature is categorical, all values are unique, $P(y = 1 | x^i = a) = 0.5$:

$$\mathbb{E}(\hat{x}_k^i | y_k) = y_k \in \{0, 1\}$$
$$\mathbb{E}(\hat{x}^i | y) = 0.5$$

米田 とくほと くほと

Greedy TBS with prior

$$\hat{x}_{k}^{i} = \frac{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + a P}{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

æ

イロト イポト イヨト イヨト

Greedy TBS with prior

$$\hat{x}_{k}^{i} = \frac{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + a P}{\sum_{j=1}^{n} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

Still problems with P1: $\hat{x}_k^i = \frac{aP}{1+a}$ if $y_k = 0$ $\hat{x}_k^i = \frac{1+aP}{1+a}$ if $y_k = 1$

э

A B F A B F

Holdout TBS

General approach:

$$\hat{x}_k^i = \frac{\sum_{\mathbf{x}_j \in \mathcal{D}_k} \mathbbm{1}_{\{x_j^i = x_k^i\}} \cdot y_j + a P}{\sum_{\mathbf{x}_j \in \mathcal{D}_k} \mathbbm{1}_{\{x_j^i = x_k^i\}} + a}$$

3

イロン 不聞と 不同と 不同と

Holdout TBS

General approach:

$$\hat{x}_{k}^{i} = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + a P}{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

Holdout TBS: $D = \hat{D}_0 \sqcup \hat{D}_1$, use $D_k = \hat{D}_0$ to calculate the TBS and \hat{D}_1 to perform training

Holdout TBS

General approach:

$$\hat{x}_{k}^{i} = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + a P}{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

Holdout TBS: $D = \hat{D}_0 \sqcup \hat{D}_1$, use $D_k = \hat{D}_0$ to calculate the TBS and \hat{D}_1 to perform training

P2 It is desirable for \hat{x}_k^i to have a low variance

• $\mathcal{D}_k = \mathcal{D} \setminus \mathbf{x}_k$ for training examples and $\mathcal{D}_k = \mathcal{D}$ for test examples

э

イロト イポト イヨト イヨト

Leave-one-out TBS

D_k = D \ x_k for training examples and D_k = D for test examples
Example: xⁱ_k = a for all examples
Let n⁺ be the number of examples with y = 1
xⁱ_k = n<sup>+-y_k+aP/n-1+a

</sup>

A B M A B M

Leave-one-out TBS

- D_k = D \ x_k for training examples and D_k = D for test examples
 Example: xⁱ_k = a for all examples
 Let n⁺ be the number of examples with y = 1
 xⁱ_k = n⁺-y_k+aP/n-1+a
- For a test example: $\hat{x}^i = \frac{n^+ + a P}{n + a}$

Ordered TBS

- \bullet Perform a random permutation σ of the dataset
- Take $D_k = {\mathbf{x}_j : \sigma(j) < \sigma(k)}$ for a training example \mathbf{x}_k and $D_k = D$ for a test example

Ordered TBS

- $\bullet\,$ Perform a random permutation σ of the dataset
- Take $D_k = {\mathbf{x}_j : \sigma(j) < \sigma(k)}$ for a training example \mathbf{x}_k and $D_k = D$ for a test example
- Obtained ordered TBS satisfies the requirement P1, and we also reduce the variance of \hat{x}_k^i (see P2) compared to sliding window TBS used in online learning
- CatBoost uses several permutations

Comparison of TBS

Relative change in logloss / zero-one loss:

	Greedy	Holdout	Leave-one-out
Adult	+1.1% / +0.79%	+2.1 % / +2.0%	+5.5% / +3.7%
Amazon	+40% / +32%	+8.3% / +8.3%	+4.5% / +5.6%
Click prediction	+13% / +6.7%	+1.5% / +0.51%	+2.7% / +0.90%
KDD appetency	+24% / +0.68%	+1.6% / -0.45%	+8.5% / +0.68%
KDD churn	+12% / +2.1%	+0.87% / +1.3%	+1.6% / +1.8%
KDD Internet	+33% / +22%	+2.6% / +1.8%	+27% / +19%
KDD upselling	+57% / +50%	+1.6% / +0.85%	+3.9% / +2.9%
Kick prediction	+22% / +28%	+1.3% / +0.32%	+3.7% / +3.3%

э

イロト イポト イヨト イヨト

• Gradient boosting: $F^t = F^{t-1} + \alpha^t h^t$, $h^t = \operatorname{argmin}_{h \in H} \mathcal{L}(F^{t-1} + h)$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Gradient boosting:
$$F^t = F^{t-1} + \alpha^t h^t$$
,
 $h^t = \operatorname{argmin}_{h \in H} \mathcal{L}(F^{t-1} + h)$
• $g^t(\mathbf{x}, y) := \frac{\partial L(y, s)}{\partial s} \Big|_{s = F^{t-1}(\mathbf{x})}$
• $\hat{h}^t = \operatorname{argmin}_{h \in H} \mathbb{E} \left(-g^t(\mathbf{x}, y) - h(\mathbf{x}) \right)^2$

Ξ.

イロン 不聞と 不同と 不同と

• Gradient boosting:
$$F^t = F^{t-1} + \alpha^t h^t$$
,
 $h^t = \operatorname{argmin}_{h \in H} \mathcal{L}(F^{t-1} + h)$
• $g^t(\mathbf{x}, y) := \frac{\partial L(y,s)}{\partial s} \Big|_{s=F^{t-1}(\mathbf{x})}$
• $\hat{h}^t = \operatorname{argmin}_{h \in H} \mathbb{E} \left(-g^t(\mathbf{x}, y) - h(\mathbf{x}) \right)^2$
• $h^t = \operatorname{argmin}_{h \in H} \frac{1}{n} \sum_{k=1}^n \left(-g^t(\mathbf{x}_k, y_k) - h(\mathbf{x}_k) \right)^2$

Ξ.

イロン 不聞と 不同と 不同と

Shifts:

- $g^t(\mathbf{x}_k, y_k) \mid \mathbf{x}_k$ is shifted from $g^t(\mathbf{x}, y) \mid \mathbf{x}$
- 2 So, h^t is biased with respect to \hat{h}^t
- This, finally, affects the generalization ability of the trained model F^t

Theoretical example

• Two features $x^1, x^2 - {\rm i.i.d.}$ Bernoulli random variables with p=1/2

•
$$y = f^*(\mathbf{x}) = c_1 x^1 + c_2 x^2$$

- Use decision stumps, $\alpha = 1$, N = 2
- $F^2 = h^1 + h^2$, h^1 based on x^1 and h^2 based on x^2

(4月) (4日) (4日)

Theoretical example

• Two features $x^1, x^2 - {\rm i.i.d.}$ Bernoulli random variables with p=1/2

•
$$y = f^*(\mathbf{x}) = c_1 x^1 + c_2 x^2$$

- $\bullet~$ Use decision stumps, $\alpha=1,~N=2$
- $F^2 = h^1 + h^2$, h^1 based on x^1 and h^2 based on x^2

Proposition

- If two independent samples \mathcal{D}_1 and \mathcal{D}_2 of size n are used to estimate h^1 and h^2 , respectively, then $\mathbb{E}_{\mathcal{D}_1,\mathcal{D}_2}F^2(\mathbf{x}) = f^*(\mathbf{x}) + O(1/2^n)$ for any $\mathbf{x} \in \{0,1\}^2$.
- **2** If the same dataset \mathcal{D} is used for both h^1 and h^2 , then $\mathbb{E}_{\mathcal{D}_1,\mathcal{D}_2}F^2(\mathbf{x}) = f^*(\mathbf{x}) \frac{1}{n-1}c_2(x^2 \frac{1}{2}) + O(1/2^n).$

イロト イポト イヨト イヨト

Ordered boosting

(日) (四) (日) (日) (日)

Ordered boosting

Algorithm 1: Ordered boosting

$$input : \{(\mathbf{x}_{k}, y_{k})\}_{k=1}^{n}, I;$$

$$1 \quad M_{i} \leftarrow 0 \text{ for } i = 1..n;$$

$$2 \quad for \ t \leftarrow 1 \text{ to } I \text{ do}$$

$$3 \quad \left[for \ i \leftarrow 1 \text{ to } n \text{ do} \right]$$

$$4 \quad \left[r_{i} \leftarrow y_{i} - M_{i-1}(i); \right]$$

$$5 \quad for \ i \leftarrow 1 \text{ to } n \text{ do}$$

$$6 \quad \left[M \leftarrow LearnModel((\mathbf{x}_{j}, r_{j})_{j=1..i}); \right]$$

$$7 \quad \left[M_{i} \leftarrow M_{i} + M; \right]$$

8 return M_n

э

米部ト 米油ト 米油ト

Two phases: choosing the tree structure and choosing the values in leaves

Second phase:

- This phase uses the standard GBDT scheme
- σ_0 random permutation used for computing ordered TBS

Two phases: choosing the tree structure and choosing the values in leaves

Second phase:

- This phase uses the standard GBDT scheme
- σ_0 random permutation used for computing ordered TBS

First phase:

- Two modes: Ordered and Plain
- $\sigma_1, \ldots, \sigma_s$ random permutation used for computing ordered TBS, also used in Ordered mode
- At each step we construct a tree based on a randomly sampled permutation σ_r

• • = • • = •

Ordered mode:

- $\bullet\,$ For simplicity of notation order examples according to σ_r
- $S_{r,j}(i)$ current prediction for i-th example based on examples 1..j
- $grad_{r,j}(i)$ is computed based on $S_{r,j}(i)$

Ordered mode:

- $\bullet\,$ For simplicity of notation order examples according to σ_r
- $S_{r,j}(i)$ current prediction for i-th example based on examples 1..j
- $grad_{r,j}(i)$ is computed based on $S_{r,j}(i)$
- Target gradient: $G = (grad_{r,0}(1), \dots, grad_{r,n-1}(n))$
- Choosing a split: for *i*-th example average $grad_{r,i-1}(j)$ for j < i in the same leaf and compare the obtained vector with G

Ordered mode:

- $\bullet\,$ For simplicity of notation order examples according to σ_r
- $S_{r,j}(i)$ current prediction for *i*-th example based on examples 1..j
- $grad_{r,j}(i)$ is computed based on $S_{r,j}(i)$
- Target gradient: $G = (grad_{r,0}(1), \dots, grad_{r,n-1}(n))$
- Choosing a split: for *i*-th example average $grad_{r,i-1}(j)$ for j < i in the same leaf and compare the obtained vector with G
- $S_{r,j}(i) \leftarrow S_{r,j}(i) \alpha \arg(grad_{r,i-1}(j) \text{ for } j < i \text{ in the same leaf})$

Comparison with baselines

Logloss / zero-one loss, relative increase is presented in the brackets:

	CatBoost	LightGBM	XGBoost
Adult	0.2695 / 0.1267	0.2760 (+2.4%) / 0.1291 (+1.9%)	0.2754 (+2.2%) / 0.1280 (+1.0%)
Amazon	0.1394 / 0.0442	0.1636 (+17%) / 0.0533 (+21%)	0.1633 (+ 17%) / 0.0532 (+ 21%)
Click prediction	0.3917 / 0.1561	0.3963 (+1.2%) / 0.1580 (+1.2%)	0.3962 (+1.2%) / 0.1581 (+1.2%)
Epsilon	0.2647 / 0.1086	0.2703 (+1.5%) / 0.114 (+4.1%)	0.2993 (+11%) / 0.1276 (+12%)
KDD appetency	0.0715 / 0.01768	0.0718 (+0.4%) / 0.01772 (+0.2%)	0.0718 (+0.4%) / 0.01780 (+0.7%)
KDD churn	0.2319 / 0.0719	0.2320 (+0.1%) / 0.0723 (+0.6%)	0.2331 (+0.5%) / 0.0730 (+1.6%)
KDD Internet	0.2089 / 0.0937	0.2231 (+6.8%) / 0.1017 (+8.6%)	0.2253 (+7.9%) / 0.1012 (+8.0%)
KDD upselling	0.1662 / 0.0490	0.1668 (+0.3%) / 0.0491 (+0.1%)	0.1663 (+0.04%) / 0.0492 (+0.3%)
Kick prediction	0.2855 / 0.0949	0.2957 (+3.5%) / 0.0991 (+4.4%)	0.2946 (+3.2%) / 0.0988 (+4.1%)

• • = • • = •

Ordered vs Plain

Table: Plain mode: logloss, zero-one loss and their relative change compared to Ordered mode

	Logloss	Zero-one loss
Adult	0.2723 (+1.1%)	0.1265 (-0.1%)
Amazon	0.1385 (-0.6%)	0.0435 (-1.5%)
Click prediction	0.3915 (-0.05%)	0.1564 (+0.19%)
Epsilon	0.2663 (+0.6%)	0.1096 (+0.9%)
KDD appetency	0.0718 (+0.5%)	0.0179 (+1.5%)
Kdd churn	0.2317 (-0.06%)	0.0717 (-0.17%)
KDD internet	0.2170 (+3.9%)	0.0987 (+5.4%)
KDD upselling	0.1664 (+0.1%)	0.0492 (+0.4%)
Kick prediction	0.2850 (-0.2%)	0.0948 (-0.1%)

イロト イポト イヨト イヨト

Ordered vs Plain, effect of size

Figure: Relative error of Plain compared to Ordered depending on the fraction of the dataset

Feature combinations

Figure: Relative change in logloss for a given allowed complexity compared to the absence of combinations

Number of permutations

Figure: Relative change in logloss for a given number of permutations \boldsymbol{s} compared to $\boldsymbol{s}=1$

∃ ⊳