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CatBoost

A variant of GBDT
Effectively handles categorical features
Shows best results on many datasets (compared with MatrixNet,
XGBoost, LightGBM)
Available as an open-source library:
https://github.com/catboost/
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Notation

Dataset D = {(xk, yk)}k=1..n, xk ∈ Rm, yk ∈ R
(xk, yk) – i.i.d. from P (·, ·)

Looking for F = argminf L(f), L(f) := E(L(y, f(x)))
Gradient boosting: F t = F t−1 + αtht,
ht = argminh∈HL(F t−1 + h) (details later)
In CatBoost, H is a family of oblivious decision trees with
limited depth
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Categorical features

Have discrete set of values (categories), not comparable with
each other
Cannot be used in binary decision trees directly

One-hot encoding: add binary variables identifying categories
Problems: large memory requirements and computational cost,
weak features
Solution: use target-based statistics (TBS) instead
We replace category xik by some numerical value x̂ik
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Greedy TBS

x̂ik =

∑n
j=1 1{xi

j=xi
k} · yj∑n

j=1 1{xi
j=xi

k}

Problem: target leakage leads to a conditional shift, i.e., x̂i|y differs
for training and test examples

P1 E(x̂i|y = v) = E(x̂ik|yk = v), where (xk, yk) is the k-th training
example

Example: i-th feature is categorical, all values are unique,
P (y = 1|xi = a) = 0.5:

E(x̂ik|yk) = yk ∈ {0, 1}

E(x̂i|y) = 0.5
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Greedy TBS with prior

x̂ik =

∑n
j=1 1{xi

j=xi
k} · yj + aP∑n

j=1 1{xi
j=xi

k} + a

Still problems with P1:
x̂ik =

aP
1+a

if yk = 0

x̂ik =
1+aP
1+a

if yk = 1
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Holdout TBS

General approach:

x̂ik =

∑
xj∈Dk

1{xi
j=xi

k} · yj + aP∑
xj∈Dk

1{xi
j=xi

k} + a

Holdout TBS : D = D̂0 t D̂1, use Dk = D̂0 to calculate the TBS and
D̂1 to perform training

P2 It is desirable for x̂ik to have a low variance
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Leave-one-out TBS

Dk = D\xk for training examples and Dk = D for test examples

Example: xik = a for all examples
Let n+ be the number of examples with y = 1
x̂ik =

n+−yk+aP
n−1+a

For a test example: x̂i = n++aP
n+a
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Ordered TBS

Perform a random permutation σ of the dataset
Take Dk = {xj : σ(j) < σ(k)} for a training example xk and
Dk = D for a test example

Obtained ordered TBS satisfies the requirement P1, and we also
reduce the variance of x̂ik (see P2) compared to sliding window
TBS used in online learning
CatBoost uses several permutations
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Comparison of TBS

Relative change in logloss / zero-one loss:
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Prediction shift

Gradient boosting: F t = F t−1 + αtht,
ht = argminh∈HL(F t−1 + h)

gt(x, y) := ∂L(y,s)
∂s

∣∣
s=F t−1(x)

ĥt = argminh∈HE (−gt(x, y)− h(x))2

ht = argminh∈H
1
n

∑n
k=1 (−gt(xk, yk)− h(xk))

2

Shifts:
1 gt(xk, yk) | xk is shifted from gt(x, y) | x
2 So, ht is biased with respect to ĥt

3 This, finally, affects the generalization ability of the trained
model F t

Liudmila Prokhorenkova et al. CatBoost 11 / 21



Prediction shift

Gradient boosting: F t = F t−1 + αtht,
ht = argminh∈HL(F t−1 + h)

gt(x, y) := ∂L(y,s)
∂s

∣∣
s=F t−1(x)
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Theoretical example

Two features x1, x2 — i.i.d. Bernoulli random variables with
p = 1/2

y = f ∗(x) = c1x
1 + c2x

2

Use decision stumps, α = 1, N = 2

F 2 = h1 + h2, h1 based on x1 and h2 based on x2

Proposition
1 If two independent samples D1 and D2 of size n are used to

estimate h1 and h2, respectively, then
ED1,D2F

2(x) = f ∗(x) +O(1/2n) for any x ∈ {0, 1}2.
2 If the same dataset D is used for both h1 and h2, then

ED1,D2F
2(x) = f ∗(x)− 1

n−1c2(x
2 − 1

2
) +O(1/2n).
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Ordered boosting

1 2 3 654 7

𝑀5
𝑡−1

𝑀6
𝑡−1

𝑟𝑡 𝑥7, 𝑦7 = 𝑦7 −𝑀6
𝑡−1(𝑥7)

8 9
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Ordered boosting
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Implementation
Two phases: choosing the tree structure and choosing the values in
leaves

Second phase:
This phase uses the standard GBDT scheme
σ0 — random permutation used for computing ordered TBS

First phase:
Two modes: Ordered and Plain
σ1, . . . , σs — random permutation used for computing ordered
TBS, also used in Ordered mode
At each step we construct a tree based on a randomly sampled
permutation σr
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Implementation

Ordered mode:
For simplicity of notation order examples according to σr
Sr,j(i) — current prediction for i-th example based on examples
1..j

gradr,j(i) is computed based on Sr,j(i)

Target gradient: G = (gradr,0(1), . . . , gradr,n−1(n))

Choosing a split: for i-th example average gradr,i−1(j) for j < i
in the same leaf and compare the obtained vector with G
Sr,j(i)← Sr,j(i)−α avg(gradr,i−1(j) for j < i in the same leaf)
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Comparison with baselines

Logloss / zero-one loss, relative increase is presented in the brackets:
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Ordered vs Plain

Table: Plain mode: logloss, zero-one loss and their relative change
compared to Ordered mode

Logloss Zero-one loss
Adult 0.2723 (+1.1%) 0.1265 (-0.1%)
Amazon 0.1385 (-0.6%) 0.0435 (-1.5%)
Click prediction 0.3915 (-0.05%) 0.1564 (+0.19%)
Epsilon 0.2663 (+0.6%) 0.1096 (+0.9%)
KDD appetency 0.0718 (+0.5%) 0.0179 (+1.5%)
Kdd churn 0.2317 (-0.06%) 0.0717 (-0.17%)
KDD internet 0.2170 (+3.9%) 0.0987 (+5.4%)
KDD upselling 0.1664 (+0.1%) 0.0492 (+0.4%)
Kick prediction 0.2850 (-0.2%) 0.0948 (-0.1%)
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Ordered vs Plain, effect of size
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Figure: Relative error of Plain compared to Ordered depending on the
fraction of the dataset
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Feature combinations
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Figure: Relative change in logloss for a given allowed complexity compared
to the absence of combinations
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Number of permutations
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Figure: Relative change in logloss for a given number of permutations s
compared to s = 1
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