

Vasily Ershov, Software Developer

CatBoost

Fast Open-Source Gradient Boosting Library For GPU

What is our place in ML world?

Why do we use GPU?

How to use the library efficiently:

› Functionality

› GPU-specific tips

Content

 3

 4

CatBoost place in ML world

Different input data => different tools to use

Images => CNN
DNA  RNN
Text

=>

 5

CatBoost place in ML world

Different input data => different tools to use

Gradient
Boosting on

Decision Trees

XGBoot

LigthGBM

CatBoost

Ordered (numerical) features

+ +……+

2 minutes

5 minutes

15 minutes

Track
length

Blues

Rock

Jazz

Genre

 6

Categorical features

Blues

Rock

Jazz

Genre

 7

CatBoost place in ML world

Use linear models 

Manually convert to

numeric and use boosting

› one-hot-encoding
(useless for high-cardinality)

› Feature engineering 
(including linear models)

Categorical features: before CatBoost

 8

CatBoost place in ML world

Blues

Rock

Jazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for
combinations

 9

CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for
combinations

2/3 1/2 1/1

 10

CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for
combinations

2/3 1/2 1/1

 11

CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for
combinations1 + α

1 + α + β

 12

CatBoost place in ML world
Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for
combinations

BluesRockJazz

Bob Alice

CatBoost Quality

Look for experiments description on our GitHub

 14

Why GPUs?

Boosting in industry

 15

More data => more quality more money

More trees => more quality more money

Faster learning => more experiments more money

DataSet sizes

Classical research and competitions:

› Higgs, 28 features, 11M samples, 7GB

› 500MB GPU Memory, 1 GPU

Modern research and production:

› Yandex: 100GB is small

› 8 GPU, 24 GB per each, for
production models

 16

Hardware

› Dual-Socket Intel
Xeon E5-2660v4 as
baseline

› Several modern
GPU as competitors

Dataset

› ≈800 features

› Sample count on x-
axis

GPU vs CPU

 17

GPU relative speed-up for
different sample count

0x

10x

20x

30x

40x

Samples count in dataset

50k 100k 250k 500k 1kk 2kk 4kk 6kk 10kk

4 times 
faster

K40 M40 1080Ti V100

Comparison with competitors

 18

Parameters

› 32 bins, 64 leaves, 200
iterations

Dataset

› ≈800 features

› 4M samples

XGBoost + V100? 0.72?
› XGBoost 0.72 crashed with

“Illegal Memory Access”;

› They have issue from 29

November, just closed without

fix

Le
ar

ni
ng

 ti
m

e
se

co
nd

s

0

50

100

150

200

250

300

350

LightGBM XGBoost CatBoost

13

304

35

6.5
23

V100 1080Ti

Ranking formulas:

› CPU: 75 hours on 100 machines

› GPU: 7-9 hours on 1 machine
with 8 Tesla P40

GPU Gradient boosting usage in
Yandex

 19

First open-source
distributed GBDT on GPU

 20

How to use?

Install

› Pip

› Conda-forge

› Build from source

Look at documentation and tutorials

System requirements:

› CUDA-compatible devices, 3.0+ (Kepler and later devices)

› CUDA 9.1 (soon just NVIDIA driver)

› Python 2.7 or Python 3.4+

› Windows, Linux, OS X

First steps

 21

Float -> byte (8-bit float) (border_count param) =>

› Reduce overfitting

› Faster learning (histograms for tree fitting)

Reduce memory usage  

Specialisation for different levels

Ordered features: feature quantisation

1 bit per feature

Binary features <= 15

4 bit per feature 8 bit per feature

 <= 32 <= 64 <= 128 <= 256

Good trade-off Default
Fastest for non-binary

One-hot-encoding:

› one_hot_max_size (default 2, maximum 255)

Control categorical feature combinations search:

› max_ctr_complexity (default 4, fastest 1)

Stream categorical features from CPU ram:

› gpu_cat_features_storage 

Categorical features

 23

Other useful features

 24

Metric evaluation during training (CatBoost viewer, TensorBoard)

› Some metrics are slow (AUC, ranking metrics) and are
computed on CPU, skip_train~true hint for metric and
metric_period options could significantly speed-up
training

Other useful features

 25

Metric evaluation during training (CatBoost viewer, TensorBoard)

Overfitting detector

Missing values support

Features and document importance (shap values, etc)

Fastest inference:

› Apply and staged predict

› metric evaluation on datasets

 26

CatBoost

Regression, Classification, Ranking

Efficient CPU and multi-GPU version

State-of-the-art quality on openly available datasets

with categorical features

World fastest inference: thanks to our special type of

trees and Intel SSE intrinsics

Analytical tools

Stand-alone binary, R, Python 2.7 and 3.4+

More math if you are interested

 27

› http://learningsys.org/nips17/assets/papers/paper_11.pdf

› https://arxiv.org/abs/1706.09516

twitter bitbucket

Vasily Ershov

Software developer

noxoomo@yandex-team.ru

Questions?

For more information:

 https://catboost.yandex

github.com/catboost

https://catboost.yandex

