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What is our place in ML world? 

Why do we use GPU?  

How to use the library efficiently: 

› Functionality 

› GPU-specific tips

Content
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CatBoost place in ML world

Different input data => different tools to use

Images => CNN
DNA  RNN
Text

=>
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CatBoost place in ML world

Different input data => different tools to use

Gradient 
Boosting on 

Decision Trees

XGBoot 

LigthGBM 

CatBoost

Ordered (numerical) features
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Categorical features
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CatBoost place in ML world

Use linear models 

Manually convert to 

numeric and use boosting 

› one-hot-encoding  
(useless for high-cardinality) 

› Feature engineering 
(including linear models) 

Categorical features: before CatBoost



 8

CatBoost place in ML world

Blues
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Jazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for 
combinations
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CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for 
combinations
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CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost
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CatBoost place in ML world

BluesRockJazz

Genre

Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for 
combinations1 + α

1 + α + β
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CatBoost place in ML world
Categorical features: with CatBoost

Boosting + out-of-box categorical features

One-hot encoding

Statistics based on category

Greedy search for 
combinations

BluesRockJazz

Bob Alice



CatBoost Quality

Look for experiments description on our GitHub
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Why GPUs?



Boosting in industry
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More data => more quality more money 

More trees => more quality more money 

Faster learning => more experiments more money



DataSet sizes 

Classical research and competitions: 

› Higgs, 28 features, 11M samples, 7GB 

› 500MB GPU Memory, 1 GPU

Modern research and production: 

› Yandex: 100GB is small 

› 8 GPU, 24 GB per each, for 
production models 
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Hardware 

› Dual-Socket Intel 
Xeon E5-2660v4 as 
baseline 

› Several modern 
GPU as competitors 

Dataset 

› ≈800 features 

› Sample count on x-
axis 

GPU vs CPU
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GPU  relative speed-up for 
different sample count

0x

10x

20x

30x

40x

Samples count in dataset

50k 100k 250k 500k 1kk 2kk 4kk 6kk 10kk

4 times 
faster

K40 M40 1080Ti V100



Comparison with competitors
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Parameters 

› 32 bins, 64 leaves, 200 
iterations 

Dataset 

› ≈800 features 

›  4M samples 

XGBoost + V100? 0.72? 
› XGBoost 0.72  crashed with 

“Illegal Memory Access”;  

› They have issue from 29 

November, just closed without 

fix
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Ranking formulas:  

› CPU: 75 hours on 100 machines 

› GPU: 7-9 hours on 1 machine 
with 8 Tesla P40

GPU Gradient boosting usage in 
Yandex

 19

First open-source 
distributed GBDT on GPU
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How to use?



Install 

› Pip 

› Conda-forge 

› Build from source 

Look at documentation and tutorials 

System requirements: 

› CUDA-compatible devices, 3.0+ (Kepler and later devices)  

› CUDA 9.1 (soon just NVIDIA driver) 

› Python 2.7 or Python 3.4+ 

› Windows, Linux, OS X

First steps
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Float -> byte (8-bit float) (border_count param) => 

› Reduce overfitting 

› Faster learning (histograms for tree fitting) 

Reduce memory usage  

Specialisation for different levels

Ordered features: feature quantisation

1 bit per feature

Binary features  <= 15

4 bit per feature 8 bit per feature

 <= 32  <= 64 <= 128 <= 256

Good trade-off Default
Fastest for non-binary



One-hot-encoding: 

› one_hot_max_size (default 2, maximum 255) 

Control categorical feature combinations search: 

› max_ctr_complexity (default 4, fastest 1) 

Stream categorical features from CPU ram: 

› gpu_cat_features_storage 

Categorical features 
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Other useful features 
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Metric evaluation during training (CatBoost viewer, TensorBoard) 

› Some metrics are slow (AUC, ranking metrics) and are 
computed on CPU, skip_train~true hint for metric and 
metric_period options could significantly speed-up 
training  



Other useful features 
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Metric evaluation during training (CatBoost viewer, TensorBoard) 

Overfitting detector 

Missing values support 

Features and document importance (shap values, etc) 

Fastest inference: 

› Apply and staged predict  

› metric evaluation on datasets 



 26

CatBoost 

Regression, Classification, Ranking 

Efficient CPU and multi-GPU version 

State-of-the-art quality on openly available datasets 

with categorical  features 

World fastest inference: thanks to our special type of 

trees and Intel SSE intrinsics  

Analytical tools 

Stand-alone binary, R, Python 2.7 and 3.4+



More math if you are interested  
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› http://learningsys.org/nips17/assets/papers/paper_11.pdf   

› https://arxiv.org/abs/1706.09516 



twitter bitbucket

Vasily Ershov 

Software developer

noxoomo@yandex-team.ru

Questions?

For more information: 

 https://catboost.yandex

github.com/catboost

https://catboost.yandex

