10 #include "factory/factory.h"
41 const char *
npRead (
const char *
s, number *a,
const coeffs r);
51 #pragma GCC diagnostic ignored "-Wlong-long"
57 #define ULONG64 (unsigned long long)(unsigned long)
59 #define ULONG64 (unsigned long)
74 int h = (int)((
long)
k);
75 return ((
int)
h !=0) && (
h <= (r->ch>>1));
91 if (((
long)a == 0) || ((
long)
b == 0))
103 if (((
long)a == 0) || ((
long)
b == 0))
115 long ii=
i % (long)r->ch;
116 if (ii < 0L) ii += (long)r->ch;
118 number c = (number)ii;
131 if ((
long)n > (((
long)r->ch) >>1))
return ((
long)n -((
long)r->ch));
132 else return ((
long)n);
146 return ((r->npPminus1M == (
long)a) &&(1L!=(
long)a));
159 if ((
long)a==0)
return (number)0L;
162 #ifndef HAVE_GENERIC_MULT
163 int s = r->npLogTable[(long)a] - r->npLogTable[(
long)
b];
164 #ifdef HAVE_GENERIC_ADD
169 s += ((long)
s >> 63) & r->npPminus1M;
171 s += ((long)
s >> 31) & r->npPminus1M;
174 d = (number)(
long)r->npExpTable[
s];
203 if ((
long)c==0L)
return c;
222 return ((
long)a) > ((long)
b);
239 if ((
long)a>(((
long)r->ch) >>1))
StringAppend(
"-%d",(
int)(((
long)r->ch)-((
long)a)));
267 return nEati((
char *)
s,
i,(
int)r->ch);
282 *a = (number)(
long)z;
290 *a =
nvDiv((number)(
long)z,(number)(
long)n,r);
293 *a =
npDiv((number)(
long)z,(number)(
long)n,r);
307 if (r->npInvTable!=
NULL)
309 omFreeSize( (
void *)r->npInvTable, r->ch*
sizeof(
unsigned short) );
313 #ifndef HAVE_GENERIC_MULT
314 if (r->npExpTable!=
NULL)
316 omFreeSize( (
void *)r->npExpTable, r->ch*
sizeof(
unsigned short) );
317 omFreeSize( (
void *)r->npLogTable, r->ch*
sizeof(
unsigned short) );
318 r->npExpTable=
NULL; r->npLogTable=
NULL;
326 return (n==
n_Zp) && (r->ch==(int)(
long)parameter);
350 snprintf(npCoeffName_buf,14,
"ZZ/%d",
cf->ch);
351 return npCoeffName_buf;
361 fprintf(d->
f_write,
"%d ",(
int)(
long)n);
369 return (number)(long)dd;
380 const int c = (int) (
long)
p;
391 r->npPminus1M = c - 1;
453 r->has_simple_Alloc=
TRUE;
454 r->has_simple_Inverse=
TRUE;
462 r->npInvTable=(
unsigned short*)
omAlloc0( r->ch*
sizeof(
unsigned short) );
464 #ifndef HAVE_GENERIC_MULT
465 r->npExpTable=(
unsigned short *)
omAlloc0( r->ch*
sizeof(
unsigned short) );
466 r->npLogTable=(
unsigned short *)
omAlloc0( r->ch*
sizeof(
unsigned short) );
467 r->npExpTable[0] = 1;
468 r->npLogTable[0] = 0;
474 r->npLogTable[1] = 0;
480 r->npExpTable[
i] =(int)(((
long)
w * (long)r->npExpTable[
i-1]) % r->ch);
481 r->npLogTable[r->npExpTable[
i]] =
i;
482 if ( r->npExpTable[
i] == 1 )
491 r->npExpTable[1] = 1;
492 r->npLogTable[1] = 0;
501 r->cfExactDiv =
nvDiv;
517 if (((
long)a<0L) || ((
long)a>(
long)r->ch))
519 Print(
"wrong mod p number %ld at %s,%d\n",(
long)a,
f,
l);
532 while (
i < 0)
i+=dst_r->ch;
549 size = (*f)[0]._mp_size;
563 e=(*f)[0]._mp_exp-
size;
575 al = dest->_mp_size =
size;
577 dd = (mp_ptr)
omAlloc(
sizeof(mp_limb_t)*al);
580 nn = (mp_ptr)
omAlloc(
sizeof(mp_limb_t)*bl);
582 for (
i=bl-2;
i>=0;
i--) nn[
i] = 0;
585 ndest->_mp_alloc = ndest->_mp_size = bl;
587 in=mpz_fdiv_ui(ndest,dst_r->ch);
592 al = dest->_mp_size =
size+e;
594 dd = (mp_ptr)
omAlloc(
sizeof(mp_limb_t)*al);
596 for (
i=0;
i<e;
i++) dd[
i] = 0;
601 dest->_mp_alloc = al;
602 iz=mpz_fdiv_ui(dest,dst_r->ch);
605 iz=(long)
npDiv((number)iz,(number)in,dst_r);
616 mpz_ptr erg = (mpz_ptr)
omAlloc(
sizeof(mpz_t));
619 mpz_mod_ui(erg, (mpz_ptr) from, dst->ch);
620 number r = (number) mpz_get_si(erg);
642 long i = (long) (((
unsigned long) from) % dst->ch);
651 return (number) (
f.intval());
725 else if ((
long)
b==0L)
746 void nvPower (number a,
int i, number *
result,
const coeffs r)
768 Print(
"ZZ/%d",r->ch);
virtual class for internal CanonicalForm's
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN nCoeff_is_long_R(const coeffs r)
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_CF(const coeffs r)
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
@ n_rep_gap_rat
(number), see longrat.h
@ n_rep_gap_gmp
(), see rinteger.h, new impl.
@ n_rep_int
(int), see modulop.h
@ n_rep_gmp_float
(gmp_float), see
@ n_rep_gmp
(mpz_ptr), see rmodulon,h
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
const CanonicalForm int s
void WerrorS(const char *s)
number nlModP(number q, const coeffs, const coeffs Zp)
static BOOLEAN npCoeffsEqual(const coeffs r, n_coeffType n, void *parameter)
static number npMapMachineInt(number from, const coeffs, const coeffs dst)
void nvInpMult(number &a, number b, const coeffs r)
number npInvers(number c, const coeffs r)
number nvDiv(number a, number b, const coeffs r)
void npPower(number a, int i, number *result, const coeffs r)
void npCoeffWrite(const coeffs r, BOOLEAN details)
BOOLEAN npIsMOne(number a, const coeffs r)
CanonicalForm npConvSingNFactoryN(number n, BOOLEAN setChar, const coeffs r)
BOOLEAN npIsOne(number a, const coeffs r)
static void npWriteFd(number n, const ssiInfo *d, const coeffs)
static number nvMultM(number a, number b, const coeffs r)
BOOLEAN npInitChar(coeffs r, void *p)
number npNeg(number c, const coeffs r)
static number npMapP(number from, const coeffs src, const coeffs dst_r)
nMapFunc npSetMap(const coeffs src, const coeffs dst)
const char * npRead(const char *s, number *a, const coeffs r)
number npInit(long i, const coeffs r)
number nvInvers(number c, const coeffs r)
static char * npCoeffName(const coeffs cf)
void npInpMult(number &a, number b, const coeffs r)
BOOLEAN npDBTest(number a, const char *f, const int l, const coeffs r)
number npMult(number a, number b, const coeffs r)
static number npMapLongR(number from, const coeffs, const coeffs dst_r)
number nvMult(number a, number b, const coeffs r)
BOOLEAN npIsZero(number a, const coeffs r)
void npWrite(number a, const coeffs r)
static number npMapZ(number from, const coeffs src, const coeffs dst)
static number npMapGMP(number from, const coeffs, const coeffs dst)
static char * npCoeffString(const coeffs cf)
static number npReadFd(const ssiInfo *d, const coeffs)
BOOLEAN npGreaterZero(number k, const coeffs r)
BOOLEAN npEqual(number a, number b, const coeffs r)
static number nvInversM(number c, const coeffs r)
static number npRandom(siRandProc p, number, number, const coeffs cf)
static const char * npEati(const char *s, int *i, const coeffs r)
long npInt(number &n, const coeffs r)
number npDiv(number a, number b, const coeffs r)
void npKillChar(coeffs r)
static number npMapCanonicalForm(number a, const coeffs, const coeffs dst)
number npConvFactoryNSingN(const CanonicalForm n, const coeffs r)
BOOLEAN npGreater(number a, number b, const coeffs r)
static number npAddM(number a, number b, const coeffs r)
static number npMultM(number a, number b, const coeffs r)
static number npNegM(number a, const coeffs r)
#define npEqualM(A, B, r)
static long npInvMod(long a, const coeffs R)
static number npInversM(number c, const coeffs r)
static void npInpAddM(number &a, number b, const coeffs r)
static number npSubM(number a, number b, const coeffs r)
The main handler for Singular numbers which are suitable for Singular polynomials.
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
char * nEati(char *s, int *i, int m)
divide by the first (leading) number and return it, i.e. make monic
const char *const nDivBy0
#define omFreeSize(addr, size)