My Project  debian-1:4.1.2-p1+ds-2
Public Member Functions | Data Fields
ap::complex Class Reference

#include <ap.h>

Public Member Functions

 complex ()
 
 complex (const double &_x)
 
 complex (const double &_x, const double &_y)
 
 complex (const complex &z)
 
complexoperator= (const double &v)
 
complexoperator+= (const double &v)
 
complexoperator-= (const double &v)
 
complexoperator*= (const double &v)
 
complexoperator/= (const double &v)
 
complexoperator= (const complex &z)
 
complexoperator+= (const complex &z)
 
complexoperator-= (const complex &z)
 
complexoperator*= (const complex &z)
 
complexoperator/= (const complex &z)
 
 complex ()
 
 complex (const double &_x)
 
 complex (const double &_x, const double &_y)
 
 complex (const complex &z)
 
complexoperator= (const double &v)
 
complexoperator+= (const double &v)
 
complexoperator-= (const double &v)
 
complexoperator*= (const double &v)
 
complexoperator/= (const double &v)
 
complexoperator= (const complex &z)
 
complexoperator+= (const complex &z)
 
complexoperator-= (const complex &z)
 
complexoperator*= (const complex &z)
 
complexoperator/= (const complex &z)
 

Data Fields

double x
 
double y
 

Detailed Description

Definition at line 59 of file ap.h.

Constructor & Destructor Documentation

◆ complex() [1/8]

ap::complex::complex ( )
inline

Definition at line 62 of file ap.h.

62 :x(0.0),y(0.0){};
double x
Definition: ap.h:98
double y
Definition: ap.h:100

◆ complex() [2/8]

ap::complex::complex ( const double &  _x)
inline

Definition at line 63 of file ap.h.

63 :x(_x),y(0.0){};

◆ complex() [3/8]

ap::complex::complex ( const double &  _x,
const double &  _y 
)
inline

Definition at line 64 of file ap.h.

64 :x(_x),y(_y){};

◆ complex() [4/8]

ap::complex::complex ( const complex z)
inline

Definition at line 65 of file ap.h.

65 :x(z.x),y(z.y){};

◆ complex() [5/8]

ap::complex::complex ( )
inline

Definition at line 71 of file svd_si.h.

71 :x(0.0),y(0.0){};

◆ complex() [6/8]

ap::complex::complex ( const double &  _x)
inline

Definition at line 72 of file svd_si.h.

72 :x(_x),y(0.0){};

◆ complex() [7/8]

ap::complex::complex ( const double &  _x,
const double &  _y 
)
inline

Definition at line 73 of file svd_si.h.

73 :x(_x),y(_y){};

◆ complex() [8/8]

ap::complex::complex ( const complex z)
inline

Definition at line 74 of file svd_si.h.

74 :x(z.x),y(z.y){};

Member Function Documentation

◆ operator*=() [1/4]

complex& ap::complex::operator*= ( const complex z)
inline

Definition at line 76 of file ap.h.

76 { double t = x*z.x-y*z.y; y = x*z.y+y*z.x; x = t; return *this; };

◆ operator*=() [2/4]

complex& ap::complex::operator*= ( const complex z)
inline

Definition at line 85 of file svd_si.h.

85 { double t = x*z.x-y*z.y; y = x*z.y+y*z.x; x = t; return *this; };

◆ operator*=() [3/4]

complex& ap::complex::operator*= ( const double &  v)
inline

Definition at line 70 of file ap.h.

70 { x *= v; y *= v; return *this; };
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37

◆ operator*=() [4/4]

complex& ap::complex::operator*= ( const double &  v)
inline

Definition at line 79 of file svd_si.h.

79 { x *= v; y *= v; return *this; };

◆ operator+=() [1/4]

complex& ap::complex::operator+= ( const complex z)
inline

Definition at line 74 of file ap.h.

74 { x += z.x; y += z.y; return *this; };

◆ operator+=() [2/4]

complex& ap::complex::operator+= ( const complex z)
inline

Definition at line 83 of file svd_si.h.

83 { x += z.x; y += z.y; return *this; };

◆ operator+=() [3/4]

complex& ap::complex::operator+= ( const double &  v)
inline

Definition at line 68 of file ap.h.

68 { x += v; return *this; };

◆ operator+=() [4/4]

complex& ap::complex::operator+= ( const double &  v)
inline

Definition at line 77 of file svd_si.h.

77 { x += v; return *this; };

◆ operator-=() [1/4]

complex& ap::complex::operator-= ( const complex z)
inline

Definition at line 75 of file ap.h.

75 { x -= z.x; y -= z.y; return *this; };

◆ operator-=() [2/4]

complex& ap::complex::operator-= ( const complex z)
inline

Definition at line 84 of file svd_si.h.

84 { x -= z.x; y -= z.y; return *this; };

◆ operator-=() [3/4]

complex& ap::complex::operator-= ( const double &  v)
inline

Definition at line 69 of file ap.h.

69 { x -= v; return *this; };

◆ operator-=() [4/4]

complex& ap::complex::operator-= ( const double &  v)
inline

Definition at line 78 of file svd_si.h.

78 { x -= v; return *this; };

◆ operator/=() [1/4]

complex& ap::complex::operator/= ( const complex z)
inline

Definition at line 77 of file ap.h.

78  {
80  double e;
81  double f;
82  if( fabs(z.y)<fabs(z.x) )
83  {
84  e = z.y/z.x;
85  f = z.x+z.y*e;
86  result.x = (z.x+z.y*e)/f;
87  result.y = (z.y-z.x*e)/f;
88  }
89  else
90  {
91  e = z.x/z.y;
92  f = z.y+z.x*e;
93  result.x = (z.y+z.x*e)/f;
94  result.y = (-z.x+z.y*e)/f;
95  }
96  *this = result;
97  return *this;
98  };
FILE * f
Definition: checklibs.c:9
Definition: ap.h:60
return result
Definition: facAbsBiFact.cc:76

◆ operator/=() [2/4]

complex& ap::complex::operator/= ( const complex z)
inline

Definition at line 86 of file svd_si.h.

87  {
89  double e;
90  double f;
91  if( fabs(z.y)<fabs(z.x) )
92  {
93  e = z.y/z.x;
94  f = z.x+z.y*e;
95  result.x = (z.x+z.y*e)/f;
96  result.y = (z.y-z.x*e)/f;
97  }
98  else
99  {
100  e = z.x/z.y;
101  f = z.y+z.x*e;
102  result.x = (z.y+z.x*e)/f;
103  result.y = (-z.x+z.y*e)/f;
104  }
105  *this = result;
106  return *this;
107  };

◆ operator/=() [3/4]

complex& ap::complex::operator/= ( const double &  v)
inline

Definition at line 71 of file ap.h.

71 { x /= v; y /= v; return *this; };

◆ operator/=() [4/4]

complex& ap::complex::operator/= ( const double &  v)
inline

Definition at line 80 of file svd_si.h.

80 { x /= v; y /= v; return *this; };

◆ operator=() [1/4]

complex& ap::complex::operator= ( const complex z)
inline

Definition at line 73 of file ap.h.

73 { x = z.x; y = z.y; return *this; };

◆ operator=() [2/4]

complex& ap::complex::operator= ( const complex z)
inline

Definition at line 82 of file svd_si.h.

82 { x = z.x; y = z.y; return *this; };

◆ operator=() [3/4]

complex& ap::complex::operator= ( const double &  v)
inline

Definition at line 67 of file ap.h.

67 { x = v; y = 0.0; return *this; };

◆ operator=() [4/4]

complex& ap::complex::operator= ( const double &  v)
inline

Definition at line 76 of file svd_si.h.

76 { x = v; y = 0.0; return *this; };

Field Documentation

◆ x

double ap::complex::x

Definition at line 100 of file ap.h.

◆ y

double ap::complex::y

Definition at line 100 of file ap.h.


The documentation for this class was generated from the following files: