My Project  debian-1:4.1.2-p1+ds-2
fast_maps.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /***************************************************************
5  * File: fast_maps.cc
6  * Purpose: implementation of fast maps
7  * Author: obachman (Olaf Bachmann)
8  * Created: 02/01
9  *******************************************************************/
10 
11 
12 
13 #include "kernel/mod2.h"
14 #include "misc/options.h"
16 #include "polys/prCopy.h"
17 #include "kernel/ideals.h"
18 #include "polys/monomials/ring.h"
19 #include "polys/sbuckets.h"
20 #include "kernel/maps/fast_maps.h"
21 
22 // define if you want to use special dest_ring
23 #define HAVE_DEST_R 1
24 // define if you want to use special src_ring
25 #define HAVE_SRC_R 1
26 // define if you want to use optimization step
27 #define HAVE_MAP_OPTIMIZE 1
28 
29 /*******************************************************************************
30 **
31 *F maMaxExp . . . . . . . . returns bound on maximal exponent of result of map
32 */
33 // return maximal monomial if max_map_monomials are substituted into pi_m
34 static poly maGetMaxExpP(poly* max_map_monomials,
35  int n_max_map_monomials, ring map_r,
36  poly pi_m, ring pi_r)
37 {
38  int n = si_min(pi_r->N, n_max_map_monomials);
39  int i, j;
40  unsigned long e_i, e_j;
41  poly m_i=NULL;
42  poly map_j = p_Init(map_r);
43 
44  for (i=1; i <= n; i++)
45  {
46  e_i = p_GetExp(pi_m, i, pi_r);
47  if (e_i==0) e_i=1;
48  m_i = max_map_monomials[i-1];
49  if (m_i != NULL && ! p_IsConstantComp(m_i, map_r))
50  {
51  for (j = 1; j<= map_r->N; j++)
52  {
53  e_j = p_GetExp(m_i, j, map_r);
54  if (e_j == 0) e_j=1;
55  p_AddExp(map_j, j, e_j*e_i, map_r);
56  }
57  }
58  }
59  return map_j;
60 }
61 
62 // returns maximal exponent if map_id is applied to pi_id
63 static unsigned long maGetMaxExp(ideal pi_id, ring pi_r, ideal map_id, ring map_r)
64 {
65  unsigned long max=0;
66  poly* max_map_monomials = (poly*) omAlloc(IDELEMS(map_id)*sizeof(poly));
67  poly max_pi_i, max_map_i;
68 
69  int i;
70  for (i=0; i<IDELEMS(map_id); i++)
71  {
72  max_map_monomials[i] = p_GetMaxExpP(map_id->m[i], map_r);
73  }
74 
75  for (i=0; i<IDELEMS(pi_id); i++)
76  {
77  max_pi_i = p_GetMaxExpP(pi_id->m[i], pi_r);
78  max_map_i = maGetMaxExpP(max_map_monomials, IDELEMS(map_id), map_r,
79  max_pi_i, pi_r);
80  unsigned long temp = p_GetMaxExp(max_map_i, map_r);
81  if (temp > max){ max=temp; }
82 
83  p_LmFree(max_pi_i, pi_r);
84  p_LmFree(max_map_i, map_r);
85  }
86  for (i=0; i<IDELEMS(map_id); i++)
87  {
88  p_Delete(&max_map_monomials[i], map_r);
89  }
90  omFreeSize(max_map_monomials,IDELEMS(map_id)*sizeof(poly));
91 
92  return max;
93 }
94 
95 
96 /*******************************************************************************
97 **
98 *F debugging stuff
99 */
100 #ifndef SING_NDEBUG
101 void maMonomial_Out(mapoly monomial, ring src_r, ring dest_r)
102 {
103  p_wrp(monomial->src, src_r);
104  printf(" ref:%d", monomial->ref);
105  if (dest_r != NULL)
106  {
107  printf(" dest:");
108  p_wrp(monomial->dest, dest_r);
109  }
110  if (monomial->f1!=NULL) { printf(" f1:%lx", (long)monomial->f1->src);
111  // p_wrp(monomial->f1->src, src_r);
112  }
113  if (monomial->f2!=NULL) { printf(" f2:%lx",(long)monomial->f2->src);
114  // p_wrp(monomial->f2->src, src_r);
115  }
116  printf("\n");
117  fflush(stdout);
118 }
119 
120 void maPoly_Out(mapoly mpoly, ring src_r, ring dest_r)
121 {
122  while (mpoly != NULL)
123  {
124  maMonomial_Out(mpoly, src_r, dest_r);
125  mpoly = mpoly->next;
126  }
127 }
128 #endif
129 
130 /*******************************************************************************
131 **
132 *F mapolyCreate . . . . . . . . . . . . . . . Creates mapoly
133 */
136 
137 mapoly maMonomial_Create(poly p, ring /*r_p*/, sBucket_pt bucket)
138 {
140  //p_wrp(p,r_p);printf(" (%x) created\n",mp);
141  mp->src = p;
142  p->next = NULL;
143 
144  if (bucket != NULL)
145  {
146  mp->coeff = (macoeff) omAlloc0Bin(macoeffBin);
147  mp->coeff->bucket = bucket;
148  mp->coeff->n = pGetCoeff(p);
149  }
150  mp->ref = 1;
151  return mp;
152 }
153 
154 void maMonomial_Destroy(mapoly mp, ring src_r, ring dest_r)
155 {
156  if (mp != NULL)
157  {
158  p_LmFree(mp->src, src_r);
159  if (mp->coeff != NULL)
160  {
161  macoeff coeff, next = mp->coeff;
162  do
163  {
164  coeff = next;
165  next = coeff->next;
166  omFreeBin(coeff, macoeffBin);
167  }
168  while (next != NULL);
169  if (mp->dest != NULL)
170  {
171  assume(dest_r != NULL);
172  p_Delete(&(mp->dest), dest_r);
173  }
174  }
175  }
176  omFreeBin(mp, mapolyBin);
177 }
178 
179 /*******************************************************************************
180 **
181 *F maPoly_InsertMonomial . . . . . . . . .insertion of a monomial into mapoly
182 */
183 mapoly maPoly_InsertMonomial(mapoly &into, mapoly what, ring src_r)
184 {
185  if (into == NULL)
186  {
187  into = what;
188  return what;
189  }
190 
191  mapoly iter = into;
192  mapoly prev = NULL;
193 
194  Top:
195  p_LmCmpAction(iter->src, what->src, src_r, goto Equal, goto Greater, goto Smaller);
196 
197  Greater:
198  if (iter->next == NULL)
199  {
200  iter->next = what;
201  return what;
202  }
203  prev = iter;
204  iter = iter->next;
205  goto Top;
206 
207  Smaller:
208  if (prev == NULL)
209  {
210  into = what;
211  what->next = iter;
212  return what;
213  }
214  prev->next = what;
215  what->next = iter;
216  return what;
217 
218  Equal:
219  iter->ref += what->ref;
220  macoeff coeff = what->coeff;
221  if (coeff != NULL)
222  {
223  while (coeff->next != NULL) coeff = coeff->next;
224  coeff->next = iter->coeff;
225  iter->coeff = what->coeff;
226  what->coeff = NULL;
227  }
228  maMonomial_Free(what, src_r);
229  return iter;
230 }
231 
232 mapoly maPoly_InsertMonomial(mapoly &into, poly p, ring src_r, sBucket_pt bucket)
233 {
234  return maPoly_InsertMonomial(into, maMonomial_Create(p, src_r, bucket), src_r);
235 }
236 
237 static void maPoly_InsertPoly(mapoly &into, poly what, ring src_r, sBucket_pt bucket)
238 {
239  poly next;
240 
241  while (what != NULL)
242  {
243  next = what->next;
244  maPoly_InsertMonomial(into, what, src_r, bucket);
245  what = next;
246  }
247 }
248 
249 /*******************************************************************************
250 **
251 *F maMap_Create . . . . . . . . . . . . . . . . . . . . create stuff
252 */
253 
254 void maMap_CreatePolyIdeal(ideal map_id, ring map_r, ring src_r, ring dest_r,
255  mapoly &mp, maideal &mideal)
256 {
257  mideal = (maideal) omAlloc0(sizeof(maideal_s));
258  mideal->n = IDELEMS(map_id);
259  mideal->buckets = (sBucket_pt*) omAlloc0(mideal->n*sizeof(sBucket_pt));
260  int i;
261  mp = NULL;
262 
263  for (i=0; i<mideal->n; i++)
264  {
265  if (map_id->m[i] != NULL)
266  {
267  mideal->buckets[i] = sBucketCreate(dest_r);
269 #ifdef PDEBUG
270  prShallowCopyR(map_id->m[i], map_r, src_r),
271 #else
272  prShallowCopyR_NoSort(map_id->m[i], map_r, src_r),
273 #endif
274  src_r,
275  mideal->buckets[i]);
276  }
277  }
278 }
279 
280 void maMap_CreateRings(ideal map_id, ring map_r,
281  ideal image_id, ring image_r,
282  ring &src_r, ring &dest_r, BOOLEAN &simple)
283 {
284 #if HAVE_SRC_R > 0
285  int* weights = (int*) omAlloc0(map_r->N*sizeof(int));
286  int i;
287  int n = si_min(map_r->N, IDELEMS(image_id));
288 
289  for (i=0; i<n; i++)
290  {
291  weights[i] = pLength(image_id->m[i])+1;
292  }
293  src_r = rModifyRing_Wp(map_r, weights);
294 #else
295  src_r = map_r;
296 #endif
297 
298 #if HAVE_DEST_R > 0
299  unsigned long maxExp = maGetMaxExp(map_id, map_r, image_id, image_r);
300  if (maxExp <= 1) maxExp = 2;
301  else if (maxExp > (unsigned long) image_r->bitmask)
302  maxExp = (unsigned long) image_r->bitmask;
303  dest_r = rModifyRing_Simple(image_r, TRUE, TRUE, maxExp, simple);
304 #else
305  dest_r = image_r;
306 #endif
307 }
308 
309 static void maMap_KillRings(ring map_r, ring image_r, ring src_r, ring dest_r)
310 {
311  if (map_r != src_r)
312  rKillModified_Wp_Ring(src_r);
313  if (image_r != dest_r)
314  rKillModifiedRing(dest_r);
315 }
316 
317 /*******************************************************************************
318 **
319 *F misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . misc stuff
320 */
321 
322 ideal maIdeal_2_Ideal(maideal m_id, ring /*dest_r*/)
323 {
324  ideal res = idInit(m_id->n, 1);
325  int l;
326 
327  for (int i= 0; i < m_id->n; i++)
328  {
329  if (m_id->buckets[i]!=NULL)
330  sBucketDestroyAdd(m_id->buckets[i], &(res->m[i]), &l);
331  }
332  omFreeSize(m_id->buckets,m_id->n*sizeof(sBucket_pt));
333  omFree(m_id);
334  return res;
335 }
336 
338 {
339  length = 0;
340  while (mp != NULL)
341  {
342  length++;
343  mp = mp->next;
344  }
345 }
346 
347 
348 /*******************************************************************************
349 **
350 *F fast_map_common_subexp . . . . . . . . . . . . . . . . . .the real thing
351 */
352 
353 ideal fast_map_common_subexp(const ideal map_id,const ring map_r,const ideal image_id,const ring image_r)
354 {
355  ring src_r, dest_r;
356  ideal dest_id/*, res_id*/;
357  int length = 0;
358  BOOLEAN no_sort;
359 
360  // construct rings we work in:
361  // src_r: Wp with Weights set to length of poly in image_id
362  // dest_r: Simple ring without degree ordering and short exponents
363  maMap_CreateRings(map_id, map_r, image_id, image_r, src_r, dest_r, no_sort);
364 
365  // construct dest_id
366  if (dest_r != image_r)
367  {
368  dest_id = idrShallowCopyR(image_id, image_r, dest_r);
369  }
370  else
371  dest_id = image_id;
372 
373  // construct mpoly and mideal
374  mapoly mp;
375  maideal mideal;
376  maMap_CreatePolyIdeal(map_id, map_r, src_r, dest_r, mp, mideal);
377 
378  if (TEST_OPT_PROT)
379  {
381  Print("map[%ld:%d]{%d:", dest_r->bitmask, dest_r->ExpL_Size, length);
382  }
383 
384  // do the optimization step
385 #if HAVE_MAP_OPTIMIZE > 0
386  if (mp!=NULL) maPoly_Optimize(mp, src_r);
387 #endif
388  if (TEST_OPT_PROT)
389  {
391  Print("%d}", length);
392  }
393 
394  // do the actual evaluation
395  maPoly_Eval(mp, src_r, dest_id, dest_r, length);
396  if (TEST_OPT_PROT) PrintS(".");
397 
398  // collect the results back into an ideal
399  ideal res_dest_id = maIdeal_2_Ideal(mideal, dest_r);
400  if (TEST_OPT_PROT) PrintS(".");
401 
402  // convert result back to image_r
403  ideal res_image_id;
404  if (dest_r != image_r)
405  {
406  //if (no_sort) see Old/m134si.tst
407  // res_image_id = idrShallowCopyR_NoSort(res_dest_id, dest_r, image_r);
408  //else
409  res_image_id = idrShallowCopyR(res_dest_id, dest_r, image_r);
410  id_ShallowDelete(&res_dest_id, dest_r);
411  id_ShallowDelete(&dest_id,dest_r);
412  }
413  else
414  res_image_id = res_dest_id;
415 
416  if (TEST_OPT_PROT) PrintS(".");
417 
418  // clean-up the rings
419  maMap_KillRings(map_r, image_r, src_r, dest_r);
420 
421  if (TEST_OPT_PROT)
422  PrintLn();
423 
424  idTest(res_image_id);
425  return res_image_id;
426 }
427 
428 
429 /**********************************************************************
430 * Evaluation stuff *
431 **********************************************************************/
432 
433 // substitute p everywhere the monomial occours,
434 // return the number of substitutions
435 static int maPoly_Substitute(macoeff c, poly p, ring dest_r)
436 {
437  // substitute the monomial: go through macoeff
438  int len;
439  BOOLEAN zero_div= (rField_is_Ring(dest_r) && !rField_is_Domain(dest_r));
440  if (!zero_div) len=pLength(p);
441  int done=0;
442  while (c!=NULL)
443  {
444  done++;
445  poly t=__pp_Mult_nn(p,c->n,dest_r);
446  #ifdef HAVE_RINGS
447  if (zero_div) len=pLength(t);
448  #endif
449  sBucket_Add_p(c->bucket, t, len);
450  c=c->next;
451  }
452  return done;
453 }
454 
455 static poly maPoly_EvalMon(poly src, ring src_r, poly* dest_id, ring dest_r)
456 {
457  int i;
458  int e;
459  poly p=NULL;
460  poly pp;
461  BOOLEAN is_const=TRUE; // to check for zero-div in p_Mult_q
462  for(i=1;i<=src_r->N;i++)
463  {
464  e=p_GetExp(src,i,src_r);
465  if (e>0)
466  {
467  is_const=FALSE;
468  pp=dest_id[i-1];
469  if (pp==NULL)
470  {
471  p_Delete(&p,dest_r);
472  return NULL;
473  }
474  if (/*(*/ p==NULL /*)*/) /* && (e>0)*/
475  {
476  p=p_Copy(pp /*dest_id[i-1]*/,dest_r);
477  e--;
478  }
479  while (e>0)
480  {
481  p=p_Mult_q(p,p_Copy(pp /*dest_id[i-1]*/,dest_r),dest_r);
482  e--;
483  }
484  }
485  }
486  if (is_const)
487  {
488  assume(p==NULL);
489  p=p_ISet(1,dest_r);
490  }
491  return p;
492 }
493 
494 void maPoly_Eval(mapoly root, ring src_r, ideal dest_id, ring dest_r, int total_cost)
495 {
496  // invert the list rooted at root:
497  if ((root!=NULL) && (root->next!=NULL))
498  {
499  mapoly q=root->next;
500  mapoly qn;
501  root->next=NULL;
502  do
503  {
504  qn=q->next;
505  q->next=root;
506  root=q;
507  q=qn;
508  }
509  while (qn !=NULL);
510  }
511 
512  total_cost /= 10;
513  int next_print_cost = total_cost;
514 
515  // the evaluation -----------------------------------------
516  mapoly p=root;
517  int cost = 0;
518 
519  while (p!=NULL)
520  {
521  // look at each mapoly: compute its value in ->dest
522  assume (p->dest==NULL);
523  {
524  if ((p->f1!=NULL)&&(p->f2!=NULL))
525  {
526  poly f1=p->f1->dest;
527  poly f2=p->f2->dest;
528  if (p->f1->ref>0) f1=p_Copy(f1,dest_r);
529  else
530  {
531  // we own p->f1->dest now (in f1)
532  p->f1->dest=NULL;
533  }
534  if (p->f2->ref>0) f2=p_Copy(f2,dest_r);
535  else
536  {
537  // we own p->f2->dest now (in f2)
538  p->f2->dest=NULL;
539  }
540  maMonomial_Free(p->f1,src_r, dest_r);
541  maMonomial_Free(p->f2,src_r, dest_r);
542  p->dest=p_Mult_q(f1,f2,dest_r);
543  } /* factors : 2 */
544  else
545  {
546  assume((p->f1==NULL) && (p->f2==NULL));
547  // no factorization provided, use the classical method:
548  p->dest=maPoly_EvalMon(p->src,src_r,dest_id->m,dest_r);
549  }
550  } /* p->dest==NULL */
551  // substitute the monomial: go through macoeff
552  p->ref -= maPoly_Substitute(p->coeff, p->dest, dest_r);
553  //printf("subst done\n");
554  if (total_cost)
555  {
557  cost++;
558  if (cost > next_print_cost)
559  {
560  PrintS("-");
561  next_print_cost += total_cost;
562  }
563  }
564 
565  mapoly pp=p;
566  p=p->next;
567  //p_wrp(pp->src, src_r);
568  if (pp->ref<=0)
569  {
570  //printf(" (%x) killed\n",pp);
571  maMonomial_Destroy(pp, src_r, dest_r);
572  }
573  //else
574  // printf(" (%x) not killed, ref=%d\n",pp,pp->ref);
575  }
576 }
577 
578 
579 /*******************************************************************************
580 **
581 *F maEggt . . . . . . . . . . . . . . . . . . . . . . . . returns extended ggt
582 */
583 // return NULL if deg(ggt(m1, m2)) < 2
584 // else return m = ggT(m1, m2) and q1, q2 such that m1 = q1*m m2 = q2*m
585 static poly maEggT(const poly m1, const poly m2, poly &q1, poly &q2,const ring r)
586 {
587 
588  int i;
589  int dg = 0;
590  poly ggt = p_Init(r);
591  q1 = p_Init(r);
592  q2 = p_Init(r);
593 
594  for (i=1;i<=r->N;i++)
595  {
596  unsigned long e1 = p_GetExp(m1, i, r);
597  unsigned long e2 = p_GetExp(m2, i, r);
598  if (e1 > 0 && e2 > 0)
599  {
600  unsigned long em = (e1 > e2 ? e2 : e1);
601  dg += em;
602  p_SetExp(ggt, i, em, r);
603  p_SetExp(q1, i, e1 - em, r);
604  p_SetExp(q2, i, e2 - em, r);
605  }
606  else
607  {
608  p_SetExp(q1, i, e1, r);
609  p_SetExp(q2, i, e2, r);
610  }
611  }
612  if (dg>1)
613  {
614  p_Setm(ggt, r);
615  p_Setm(q1, r);
616  p_Setm(q2, r);
617  }
618  else
619  {
620  p_LmFree(ggt, r);
621  p_LmFree(q1, r);
622  p_LmFree(q2, r);
623  ggt = NULL;
624  }
625  return ggt;
626 }
627 
628 /********************************************************************
629  ** *
630  * maFindBestggT *
631  * finds ggT with the highest cost *
632  *******************************************************************/
633 
634 static mapoly maFindBestggT(mapoly mp, mapoly & choice, mapoly & fp, mapoly & fq,const ring r)
635 {
636  int ggt_deg = 0;
637  poly p = mp->src;
638  mapoly iter = choice;
639  poly ggT = NULL;
640  fp = NULL;
641  fq = NULL;
642  poly fp_p=NULL;
643  poly fq_p=NULL;
644  choice=NULL;
645  while ((iter != NULL) && (p_Deg(iter->src, r) > ggt_deg))
646  {
647  // maMonomial_Out(iter, r, NULL);
648  poly q1, q2, q;
649 
650  q = maEggT(p, iter->src, q1, q2,r);
651  if (q != NULL)
652  {
653  int tmp_deg;
654  assume((q1!=NULL)&&(q2!=NULL));
655  if ((tmp_deg=p_Deg(q,r)) > ggt_deg)
656  {
657  choice=iter;
658  if (ggT != NULL)
659  {
660  p_LmFree(ggT, r);
661  p_LmFree(fp_p, r);
662  p_LmFree(fq_p, r);
663  }
664  ggt_deg = tmp_deg ; /*p_Deg(q, r);*/
665  ggT = q;
666  fp_p = q1;
667  fq_p = q2;
668  }
669  else
670  {
671  p_LmFree(q, r);
672  p_LmFree(q1, r);
673  p_LmFree(q2, r);
674  }
675  }
676  iter=iter->next;
677  }
678  if(ggT!=NULL)
679  {
680  int dq =p_Totaldegree(fq_p,r);
681  if (dq!=0)
682  {
683  fq=maPoly_InsertMonomial(mp, fq_p, r, NULL);
684  fp=maPoly_InsertMonomial(mp, fp_p, r, NULL);
685  return maPoly_InsertMonomial(mp, ggT, r, NULL);
686  }
687  else
688  {
689  fq=NULL;
690  p_LmFree(fq_p, r);
691  p_LmFree(ggT, r);
692  fp=maPoly_InsertMonomial(mp, fp_p, r, NULL);
693  choice->ref++;
694  return choice;
695  }
696  }
697  else
698  {
699  return NULL;
700  }
701 }
702 
703 /********************************************************************
704  ** *
705  * maPoly_Optimize *
706  * adds and integrates subexpressions *
707  *******************************************************************/
708 
709 void maPoly_Optimize(mapoly mpoly, ring src_r)
710 {
711  assume(mpoly!=NULL && mpoly->src!=NULL);
712  mapoly iter = mpoly;
713  mapoly choice;
714  mapoly ggT=NULL;
715  mapoly fp=NULL;
716  mapoly fq=NULL;
717  while (iter->next!=NULL)
718  {
719  choice=iter->next;
720  if ( /*(*/ iter->f1==NULL /*)*/ )
721  {
722  ggT=maFindBestggT(iter, choice, fp, fq,src_r);
723  if (choice!=NULL)
724  {
725  assume(iter->f1==NULL);
726  assume(iter->f2==NULL);
727  iter->f1=fp;
728  iter->f2=ggT;
729  if (fq!=NULL)
730  {
731  ggT->ref++;
732  choice->f1=fq;
733  choice->f2=ggT;
734  }
735  }
736  else assume(ggT==NULL);
737  }
738  iter=iter->next;
739  }
740 }
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
#define PDEBUG
Definition: auxiliary.h:186
static int si_min(const int a, const int b)
Definition: auxiliary.h:141
CanonicalForm pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:248
int l
Definition: cfEzgcd.cc:93
int i
Definition: cfEzgcd.cc:125
int p
Definition: cfModGcd.cc:4019
CanonicalForm fp
Definition: cfModGcd.cc:4043
#define Print
Definition: emacs.cc:80
CFFListIterator iter
Definition: facAbsBiFact.cc:54
CanonicalForm res
Definition: facAbsFact.cc:64
int j
Definition: facHensel.cc:105
void maMonomial_Destroy(mapoly mp, ring src_r, ring dest_r)
Definition: fast_maps.cc:154
ideal fast_map_common_subexp(const ideal map_id, const ring map_r, const ideal image_id, const ring image_r)
Definition: fast_maps.cc:353
void maMap_CreateRings(ideal map_id, ring map_r, ideal image_id, ring image_r, ring &src_r, ring &dest_r, BOOLEAN &simple)
Definition: fast_maps.cc:280
static poly maGetMaxExpP(poly *max_map_monomials, int n_max_map_monomials, ring map_r, poly pi_m, ring pi_r)
Definition: fast_maps.cc:34
STATIC_VAR omBin macoeffBin
Definition: fast_maps.cc:135
static poly maEggT(const poly m1, const poly m2, poly &q1, poly &q2, const ring r)
Definition: fast_maps.cc:585
void maMap_CreatePolyIdeal(ideal map_id, ring map_r, ring src_r, ring dest_r, mapoly &mp, maideal &mideal)
Definition: fast_maps.cc:254
void maPoly_GetLength(mapoly mp, int &length)
Definition: fast_maps.cc:337
mapoly maPoly_InsertMonomial(mapoly &into, mapoly what, ring src_r)
Definition: fast_maps.cc:183
static void maPoly_InsertPoly(mapoly &into, poly what, ring src_r, sBucket_pt bucket)
Definition: fast_maps.cc:237
mapoly maMonomial_Create(poly p, ring, sBucket_pt bucket)
Definition: fast_maps.cc:137
ideal maIdeal_2_Ideal(maideal m_id, ring)
Definition: fast_maps.cc:322
static poly maPoly_EvalMon(poly src, ring src_r, poly *dest_id, ring dest_r)
Definition: fast_maps.cc:455
static int maPoly_Substitute(macoeff c, poly p, ring dest_r)
Definition: fast_maps.cc:435
static mapoly maFindBestggT(mapoly mp, mapoly &choice, mapoly &fp, mapoly &fq, const ring r)
Definition: fast_maps.cc:634
static unsigned long maGetMaxExp(ideal pi_id, ring pi_r, ideal map_id, ring map_r)
Definition: fast_maps.cc:63
void maPoly_Eval(mapoly root, ring src_r, ideal dest_id, ring dest_r, int total_cost)
Definition: fast_maps.cc:494
STATIC_VAR omBin mapolyBin
Definition: fast_maps.cc:134
static void maMap_KillRings(ring map_r, ring image_r, ring src_r, ring dest_r)
Definition: fast_maps.cc:309
void maPoly_Optimize(mapoly mpoly, ring src_r)
Definition: fast_maps.cc:709
class macoeff_s * macoeff
Definition: fast_maps.h:22
void maMonomial_Out(mapoly monomial, ring src_r, ring dest_r=NULL)
class maideal_s * maideal
Definition: fast_maps.h:23
void maPoly_Out(mapoly mpoly, ring src_ring, ring dest_r=NULL)
class mapoly_s * mapoly
Definition: fast_maps.h:21
mapoly maMonomial_Free(mapoly monomial, ring src_r, ring dest_r=NULL)
Definition: fast_maps.h:67
static int max(int a, int b)
Definition: fast_mult.cc:264
static BOOLEAN Equal(number a, number b, const coeffs r)
Definition: flintcf_Q.cc:322
#define STATIC_VAR
Definition: globaldefs.h:7
#define idTest(id)
Definition: ideals.h:47
static bool Greater(mono_type m1, mono_type m2)
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:263
ListNode * next
Definition: janet.h:31
#define assume(x)
Definition: mod2.h:390
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omGetSpecBin(size)
Definition: omBin.h:11
#define NULL
Definition: omList.c:12
omBin_t * omBin
Definition: omStructs.h:12
#define TEST_OPT_PROT
Definition: options.h:101
poly p_GetMaxExpP(poly p, const ring r)
return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0,...
Definition: p_polys.cc:1128
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1287
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:577
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1053
static BOOLEAN p_IsConstantComp(const poly p, const ring r)
like the respective p_LmIs* routines, except that p might be empty
Definition: p_polys.h:1925
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:605
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition: p_polys.h:746
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:961
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:487
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:232
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:468
#define p_LmCmpAction(p, q, r, actionE, actionG, actionS)
Definition: p_polys.h:1647
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:860
static unsigned pLength(poly a)
Definition: p_polys.h:191
static void p_LmFree(poly p, ring)
Definition: p_polys.h:682
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1259
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:811
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1446
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
poly prShallowCopyR(poly p, ring r, ring dest_r)
Definition: prCopy.cc:116
ideal idrShallowCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:219
poly prShallowCopyR_NoSort(poly p, ring r, ring dest_r)
Definition: prCopy.cc:111
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
ring rModifyRing_Wp(ring r, int *weights)
construct Wp, C ring
Definition: ring.cc:2889
void rKillModifiedRing(ring r)
Definition: ring.cc:3002
void rKillModified_Wp_Ring(ring r)
Definition: ring.cc:3012
ring rModifyRing_Simple(ring r, BOOLEAN ommit_degree, BOOLEAN ommit_comp, unsigned long exp_limit, BOOLEAN &simple)
Definition: ring.cc:2937
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:479
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:482
void sBucket_Add_p(sBucket_pt bucket, poly p, int length)
adds poly p to bucket destroys p!
Definition: sbuckets.cc:203
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
void id_ShallowDelete(ideal *h, ring r)
Shallowdeletes an ideal/matrix.
#define IDELEMS(i)
Definition: simpleideals.h:23