
Navigation and Ancillary Information Facility

N IF

RBSP SPICE Workshop

August 18, 2010

Scott Turner Grant Stephens

* This material borrows heavily from NAIF’s Tutorials
located at: http://naif.jpl.nasa.gov/naif/tutorials.html

Navigation and Ancillary Information Facility

N IF Topics

•  Installing the SPICE Toolkit
•  Testing the installation – a simple SPICE program
•  Time conversions with SPICE
•  Using SPICE for ephemeris computations
•  Frame transformations in SPICE

Installing the SPICE Toolkit 2

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 3

Getting Toolkit

•  All instances of the SPICE Toolkit are available 24x7
from the NAIF WWW server

 http://naif.jpl.nasa.gov/naif/toolkit.html

•  No password or identification is needed
•  To download a Toolkit package

–  Select language – FORTRAN, C, IDL, or MATLAB
–  Select computer platform/OS/compiler combination
–  Download all toolkit package components

»  package file – toolkit.tar.Z (or toolkit.exe),
 cspice.tar.Z (or cspice.exe),
 icy.tar.Z (or icy.exe), or
 mice.tar.Z (or mice.exe)
»  Installation script (if present) – import*.csh
»  Accompanying documents - README, dscriptn.txt, whats,new

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 4

Terminal Window

•  To install the Toolkit, follow the directions given in the README. Normally
this consists of the following (not applicable for PC Windows):

prompt> chmod u+x importSpice.csh
prompt> ./importSpice.csh
prompt> rm toolkit.tar

•  For PC Windows, execute the toolkit.exe application (or cspice or icy or
mice) to expand the archive.

> toolkit

•  You now have the expanded toolkit (or cspice or icy or mice) package.

Installing Toolkit

Navigation and Ancillary Information Facility

N IF Programming Task

•  Install the SPICE Toolkit onto your system now.

Installing the SPICE Toolkit 5

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 6

•  The top level directory name for each Toolkit is:
–  “toolkit” for Fortran Toolkits
–  “cspice” for C Toolkits
–  “icy” for IDL Toolkits
–  “mice” for MATLAB Toolkits

•  Directory structures for the Toolkits are almost identical.
However…

–  The CSPICE, Icy and Mice Toolkits also have a directory for include files
–  The names for application source code directories in CSPICE, Icy and

Mice differ slightly from those in the Fortran toolkit
–  Icy and Mice include additional directories for

»  Icy/Mice source code
»  Icy/Mice cookbook programs

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 7

•  The next level is comprised of:
–  data

»  Cookbook example kernels (use ONLY for training with cookbook programs)
–  doc

»  Text documents — *.req, *.ug, spicelib.idx/cspice.idx, whats.new,
dscriptn.txt, version.txt.

»  Subdirectory containing HTML documentation, called “html”.
•  The “html” subdirectory contains a single file — the top level HTML documentation

index called “index.html” — and a number of subdirectories, one for each of the
various groups of documents in HTML format (API Reference Guide pages, User’s
Guide pages, etc.)

–  etc
»  In generic Toolkits this directory is empty.

–  exe
»  Executables for brief, chronos, ckbrief, commnt, inspekt, mkspk, msopck,

spacit, spkdiff, frmdiff, spkmerge, tobin, toxfr, version.
»  Executables for the several cookbook example programs.

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 8

–  include (applies to CSPICE, Icy, and Mice)
»  API header files.

•  File to include in callers of CSPICE is SpiceUsr.h

–  lib

»  Toolkit libraries:
•  For Fortran SPICE Toolkits

–  spicelib.a or spicelib.lib (public modules; use these)
–  support.a or support.lib (private modules; don’t use these)

•  For CSPICE Toolkits
–  cspice.a or cspice.lib (public modules; use these)
–  csupport.a or csupport.lib (private modules; don’t use these)

•  For Icy Toolkits:
–  icy.so (shared object library)
–  icy.dlm (dynamically loadable module)
–  cspice.a or cspice.lib
–  csupport.a or csupport.lib

•  For Mice Toolkits:
–  mice.mex* (shared object library)
–  cspice.a or cspice.lib
–  csupport.a or csupport.lib

–  src

»  Source code directories for executables and libraries
•  Files have type *.f, *.for, *.inc, *.pgm, *.c, *.h, *.x, *.pro, *.m
•  *.h files appearing here are not part of the user API

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 9

•  All Toolkits include documentation in plain text and HTML
formats

–  Plain text documents are located under the “doc” directory
–  HTML documents are located under the “<toolkit_name>/doc/

html” (Unix) or “<toolkit name>\doc\html” (Windows) directory
»  “<toolkit_name>/doc/html/index.html” or “<toolkit_name>\doc\html

\index.html” is the top level index
•  All Toolkits include the following kinds of documents

–  Module headers

»  Act as primary functional specification: I/O, exceptions, particulars
defining behavior of module

»  Contain code examples
»  A standard format is used for each routine or entry point
»  Plain text Module Headers:

•  Fortran: the top comment block in the source code files under “src/spicelib”
•  C: the top comment block in the source code files under “src/cspice”
•  IDL: Icy Module Headers are not available in plain text format
•  MATLAB accessible via “help function_name” command

»  HTML Module Headers are accessible using the “API Reference
Guide” link from the top level index.

Toolkit Documentation

continues on next page

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 10

–  Required Reading
»  References for principal subsystems
»  Provide many low-level details
»  Provide code examples
»  Plain text versions are located under “doc” and have extension

“.req”
»  HTML versions are are accessible using the “Required Reading

Documents” link from the top level index.
»  Not all of Required Readings were adapted for all languages

•  Some of the Required Reading documents provided with CSPICE still cover Fortran
SPICE

•  Some of the Required Readings for Icy or Mice toolkits still cover CSPICE
–  User’s Guides

»  Interface specifications for the Toolkit utility programs and
applications

»  Plain text versions are located under “doc” and have extension
“.ug”

»  HTML versions are accessible using the “User’s Guide
Documents” link from the top level index.

Toolkit Documentation

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 11

Toolkit Documentation

•  Other documents
–  Permuted Index

»  Maps phrases describing functionality to corresponding module
names and file names

»  Shows names of all entry points in Fortran toolkit APIs
»  Plain text version is located under “doc” and has extension “.idx”:

•  Fortran: spicelib.idx
•  C: cspice.idx
•  IDL: icy.idx and cspice .idx
•  MATLAB: mice.idx and cspice.idx

»  HTML version isaccessible using the “Permuted Index” link from
the top level index.

–  Toolkit Description
»  Describes the directory structure and contents of an installed

Toolkit
»  Customized based on set of delivered products and platform
»  Plain text version is “doc/dscriptn.txt”
»  HTML version isaccessible using the “Toolkit Contents” link from

the top level index.

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 12

Toolkit Documentation

•  Other documents (continued)
–  Introduction to SPICE

»  Brief introduction to the Toolkit and SPICE system
»  Not available in plain text
»  HTML version isaccessible using the “Introduction to the SPICE

System” link from the top level index.

–  What’s New in SPICE
»  Describes new features and bug fixes
»  Plain text version is “doc/whats.new”
»  HTML version isaccessible using the “What’s New in SPICE” link

from the top level index.

–  Toolkit Version Description
»  Indicates Toolkit version
»  Plain text version is “doc/version.txt”
»  Not available in HTML

Navigation and Ancillary Information Facility

N IF Testing the Installation

•  Retrieve the “start_programming” lesson from
NAIF’s website:

http://naif.jpl.nasa.gov/naif/lessons.html

•  Unpack it onto your system and begin this basic
SPICE programming lesson. It will verify that you
have SPICE properly installed and are able to
utilize successfully it with your language of
choice.

Lesson #1: Basic SPICE Program 13

Navigation and Ancillary Information Facility

N IF Programming Task

•  Build the sample SPICE program from the start
programming lesson now.

Installing the SPICE Toolkit 14

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 15

•  Time inputs and outputs in users’ SPICE-based programs are
usually strings representing epochs in these three time systems:

–  Coordinated Universal Time (UTC)
–  Spacecraft Clock (SCLK)
–  Ephemeris Time (ET, also referred to as Barycentric Dynamical Time, TDB)

•  Independent time variable in kernels, and time inputs and outputs
to SPICE routines reading kernel data and computing derived
geometry, are double precision numbers representing epochs in
these two time systems:

–  Numeric Ephemeris Time (TDB), expressed as ephemeris seconds past J2000
–  Encoded Spacecraft Clock, expressed as clock ticks since the clock start

•  SPICE provides routines to perform conversions between string
and numeric times using data from these two kernels:

–  Leapseconds Kernel (LSK) containing data for UTC <=> ET conversion
–  Spacecraft Clock Kernel (SCLK) containing data for ET <=> SCLK conversion

•  Caution: the long-term future relationships between UTC,
TDB, and SCLK time systems cannot be accurately predicted

Time Systems and Kernels

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 16

•  UTC, TDB, or TDT (TT) String to numeric Ephemeris Time
–  STR2ET (string, ET)

»  Converts virtually any time string, excepting SCLK. For example:
‘1996-12-18T12:28:28’ ‘1978/03/12 23:28:59.29’ ‘Mar 2, 1993 11:18:17.287 p.m. PDT’
‘1995-008T18:28:12’ ‘1993-321//12:28:28.287’
‘2451515.2981 JD’ ‘ jd 2451700.05 TDB’
‘1988-08-13, 12:29:48 TDB’ ‘1992 June 13, 12:29:48 TDT’

»  Requires LSK kernel
•  Spacecraft Clock String to numeric Ephemeris Time

–  SCS2E (scid, string, ET)
»  Converts SCLK strings consistent with SCLK parameters. For example:

‘5/65439:18:513’ (VGR1) ‘946814430.172’ (MRO) ‘1/0344476949-27365’ (MSL)

»  The “LSK and SCLK” tutorial discusses SCLK string formats in detail
»  Requires SCLK kernel, and usually LSK kernel (to handle a very small

~2 msec, difference between TDB and TT)

•  Spacecraft Clock String to Encoded Spacecraft Clock (used in
the mid-level interfaces of the C-kernel system)

–  SCENCD (scid, string, SCLKDP)
»  Requires only SCLK kernel

Converting Time Strings

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 17

•  Numeric Ephemeris Time to Calendar, DOY or Julian Date UTC,
TDB, or TDT String

–  TIMOUT (et, fmtpic, STRING)
»  fmtpic is an output time string format specification, giving the user great

flexibility in setting the appearance of the output time string and the time
system used (UTC, TDB, TDT).

•  See next slide for examples of format pictures to produce a variety of output time strings
•  See the TIMOUT header for complete format picture syntax
•  The module TPICTR may be useful in constructing a format picture specification from a

sample time string

»  Requires LSK Kernel

–  ETCAL (et, STRING)
»  STRING, fixed format ephemeris calendar time string, for example

‘2000 JAN 01 12:16:40.123’
»  No LSK Kernel is required

Converting Numeric Times - 1

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 18

Common Time Strings
1999-03-21T12:28:29.702

1999-283T12:29:33

1999-01-12, 12:00:01.342 TDB

2450297.19942145 JD TDB

Less Common Time Strings
465 B.C. Jan 12 03:15:23 p.m.

04:28:55 A.M. June 12, 1982

Thursday November 04, 1999

DEC 31, 15:59:60.12 1998 (PST)

Format Picture Used (fmtpic)
YYYY-MM-DDTHR:MN:SC.###

YYYY-DOYTHR:MN:SC ::RND

YYYY-MM-DD, HR:MN:SC.### ::TDB TDB

JULIAND.######## ::TDB JD TDB

Format Picture Used (fmtpic)
YYYY ERA Mon DD AP:MN:SC ampm

AP:MN:SC AMPM Month DD, YYYY

Weekday Month DD, YYYY

MON DD, HR:MN:SC YYYY (PST)::UTC-8

 Example Time Strings and the Corresponding Format Pictures

Use of Format Picture

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 19

•  Numeric Ephemeris Time to Spacecraft Clock String

–  SCE2S (scid, et, SCLKCH)
»  Requires both LSK and SCLK kernels
»  Output SCLK string examples:

 ‘1/1487147147.203’ (Cassini, MGS)
 ‘1/05812:00:001’ (Voyager 1 and 2)

•  Encoded Spacecraft Clock to Spacecraft Clock String

–  SCDECD (scid, sclkdp, SCLKCH)
»  Requires only SCLK kernel

Converting Numeric Times - 2

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 20

Barycentric
Dynamical Time

(TDB or ET)

Encoded
Spacecraft Clock

(Ticks)

Time string in
UTC, TDB or TDT

TIMOUT
ET2UTC

Spacecraft
Clock

(SCLK)

SCE2S

SCS2E

SCENCD

SCDECD

needs lsk

needs sclk

needs lsk and sclk

Principal Time System Interfaces

Local
Solar
Time

needs pck and spk ET2LST

Uniform time
systems (TDT,TAI,

JED, JDTDT)

DELTET

UNITIM

STR2ET

UTC seconds
past J2000

“L-sub-S”
(planetocentric

longitude of the sun)

LSPCN

SCT2E SCE2C

(Includes lots of
formatting flexibility)

Navigation and Ancillary Information Facility

N IF

21 Using Module Headers

Module Header Purpose

•  NAIF uses module “headers” to provide SPICE users
with detailed information describing a module’s
function and design.

–  In FORTRAN, C and MATLAB the “headers” are comment blocks
inserted in the source code

•  All Toolkit distributions include HTML versions of the
module headers.

•  Using the HTML formats is usually the best approach
because of hyperlinking with other NAIF
documentation

•  The next charts provide the header locations

Navigation and Ancillary Information Facility

N IF

22 Using Module Headers

Fortran Module Header Locations

•  In FORTRAN Toolkits:
–  <path to SPICELIB>/toolkit/src/spicelib/<name.f or <name>.for
–  In most cases there is a single “header” at the top of the source

code. For cases where a FORTRAN module has multiple entry
points, there are additional “headers” at each entry point. For
example:

»  “keeper.f” has entries for:
•  FURNSH, KTOTAL, KINFO, KDATA, KCLEAR, and UNLOAD

•  HTML versions of the headers:
–  <path to SPICELIB>/toolkit/doc/html/spicelib/index.html

Navigation and Ancillary Information Facility

N IF

23 Using Module Headers

C Module Header Locations

•  In C Toolkits:
–  <path to CSPICE>/cspice/src/cspice/<name>_c.c

•  HTML versions of the headers:
–  <path to CSPICE>/cspice/doc/html/cspice/index.html

Navigation and Ancillary Information Facility

N IF

24 Using Module Headers

Icy Module Header Locations

•  In IDL (“Icy”) toolkits, two sets of headers are
provided.

–  Icy headers in HTML format:
»  <path to Icy>/icy/doc/html/icy/index.html

–  CSPICE headers, in text and HTML formats:
»  <path to Icy>/icy/src/cspice/<name>_c.c
»  <path to Icy>/icy/doc/html/cspice/index.html

•  The information provided in an “Icy” wrapper is
minimal in some cases; the corresponding CSPICE
wrapper provides more detail.

–  A link to the corresponding CSPICE wrapper is provided in the Icy
wrapper.

Navigation and Ancillary Information Facility

N IF

25 Using Module Headers

Mice Module Header Locations

•  In Matlab (“Mice”) toolkits, two sets of headers are
provided.

–  Mice headers in HTML format:
»  <path to Mice>/mice/doc/html/mice/index.html
»  The user can also access the information presented in the HTML

document via the Matlab help command, e.g.
>> help cspice_str2et

–  CSPICE headers, in text and HTML formats:
»  <path to Mice>/mice/src/cspice/<name>_c.c
»  <path to Mice>/mice/doc/html/cspice/index.html

•  The information provided in a “Mice” wrapper is
minimal in some cases; the corresponding CSPICE
wrapper provides more detail.

–  A link to the corresponding CSPICE wrapper is provided in the Mice
wrapper.

Navigation and Ancillary Information Facility

N IF

26 Using Module Headers

Examine a Typical Header

•  As example, look for and examine one of these
headers:

FORTRAN C IDL (Icy) MATLAB (Mice)
TIMOUT timout_c cspice_timout cspice_timout
STR2ET str2et_c cspice_str2et cspice_str2et

Navigation and Ancillary Information Facility

N IF Programming Task

•  Install the in-situ programming lesson from:
http://sd-www.jhuapl.edu/MIDF/turner/rbsp/

•  Complete steps #1 and #2 in the in-situ
programming lesson.

•  In addition to the above, write code to convert the
the RBSP_B MET: 98927737 with 22180 (out of
50000) subsecond counts to a UTC day of year
format. Note: There are several ways to attack
this, consider using the SPICE routine TIMOUT to
solve this problem and exploring the encoded
SCLK (SCENCD, SCDECD) concept.

In-situ Programming Example 27

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 28

•  An SPK file contains ephemeris (trajectory) data for
"ephemeris objects.”

–  “Ephemeris” means position and velocity as a function of time.
•  Spacecraft, planets, satellites, comets and asteroids

are the obvious kinds of "ephemeris objects," but
many other possibilities exist, such as:

–  a rover on the surface of a body
–  a camera on top of a mast on a lander
–  a transmitter cone on a spacecraft
–  a deep space communications antenna on the earth
–  the center of mass of a planet/satellite system (planet barycenter)
–  the center of mass of our solar system (solar system barycenter)

•  See the next page for a pictorial representation of
some of these objects.

SPICE Ephemeris Data

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 29

Examples of Ephemeris Objects

Asteroid

Comet

Sun

Solar
system

barycenter

Object on
surface such
as a lander

or rover

Spacecraft

Planet system's
mass center
(barycenter*)

Planet's
mass
center

Satellite

Antenna
feed cone

•

Earth

Communications
Station

• •

*A barycenter is the
center of mass of a
set of bodies, such as
Saturn plus all of
Saturn's satellites.

The head and the tail of
every blue arrow are located
at “ephemeris objects.”

. ...

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 30

Inside an SPK:
Bodies and Centers of Motion

•  Inside an SPK file ephemeris objects come in
pairs: a “body” and its “center of motion.”

–  The ephemeris is given for the body moving relative to the
center of motion.

»  For the position component, the vector points TO the body
FROM the center of motion.

–  There can be, and often are, multiple such pairs within an SPK
file.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 31

•  When you read an SPK file you specify which ephemeris
object is to be the “target” and which is to be the “observer.”

•  The SPK system returns the state of the target relative to the
observer.

–  The position data point from the “observer” to the “target.”
–  The velocity is that of the “target” relative to the “observer.”

Reading an SPK:
Observers and Targets

Target

Observer

Observer

Target

Caution: state (observer, target) ≠ - state (target, observer)

unless the state is geometric (no aberration corrections).

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 32

•  The time period over which an SPK file provides data for an
ephemeris object is called the “coverage” or “time coverage”
for that object.

–  An SPK file’s coverage for an object consists of one or more time
intervals.

–  Often the coverage for all objects in an SPK file is a single, common time
interval.

»  Example: a planetary SPK file such as de421.bsp
»  Counterexample: Cassini tour SPK with merged Huygens probe ephemeris

•  For any request time within any time interval comprising the
coverage for an object, the SPK system can return a vector
representing the state of that body relative to its center of
motion.

–  The SPK system will automatically interpolate ephemeris data to produce
a state vector at the request time.

–  To a user’s program, the ephemeris data appear to be continuous over
each time interval, even if the data stored inside the SPK file are discrete.

SPK File Coverage

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 33

Reference Frames as Used in
Writing and Reading SPKs

•  All ephemeris data in an SPK file have an associated
reference frame

–  There could be multiple such frames, each for a different portion of the
data

–  For the ephemeris data to be useful, this/these frames must be “known”
to any program that will subsequently read the ephemeris data

•  The application “reading” an SPK file(s) must specify
relative to what reference frame the output state or position
vectors are to be given

–  This frame must be “known” to the SPICE-based program

•  “Known” means either a built-in frame (“hard coded”) or
one fully specified at run-time

–  The user’s program may need to have access to additional SPICE data
in order to construct some of these frames

On Writing

On Reading

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 34

•  To retrieve position or state vectors of ephemeris objects
from an SPK file one normally needs two kinds of SPICE
kernels

–  Ephemeris kernel(s) (SPK)
»  Sometimes just one is needed
»  Sometimes two or more are needed to chain together the "target"

and "observer" you have selected
–  Leapseconds kernel (LSK)

»  Used to convert between Coordinated Universal Time (UTC) and
Ephemeris Time (ET)

»  Usually needed since most people work with UTC time
•  Retrieving ephemeris data from an SPK file is usually

called “reading” the file
–  This term is not very accurate since the SPK “reader” software also

performs interpolation, and may chain together data from multiple
sources and/or perform aberration corrections

•  State and position vectors retrieved from an SPK file by the
SPK “reader” routines are of the form:

–  X,Y, Z, dX, dY, dZ for a state vector
–  X, Y, Z for a position vector

Retrieving Position or State Vectors

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 35

Tell your program which SPICE files to use (“loading” files)
CALL FURNSH ('spk_file_name')
CALL FURNSH ('leapseconds_file_name')

Convert UTC time to ephemeris time (TDB), if needed
CALL STR2ET ('utc_string', tdb)

Retrieve state vector from the SPK file at your requested time
CALL SPKEZR (target, tdb, 'frame', 'correction', observer, state, light time)

Use the returned state vector in other SPICE routines to compute observation
geometry of interest.

Loop... do as many times as you need to

Initialization…typically done once per program execution

inputs outputs

Retrieving a State Vector

Better yet, replace these
two calls with a single call
to a “furnsh kernel”
containing the names of all
kernel files to load.

Fortran syntax

used here

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 36

•  TARGET* and OBSERVER*: Character names or NAIF IDs for the
end point and origin of the state vector (Cartesian position and
velocity vectors) to be returned.

–  The position component of the requested state vector points from observer to
target.

•  TDB: The time at the observer at which the state vector is to be
computed. The time system used is Ephemeris Time (ET), now
generally called Barycentric Dynamical Time (TDB).

•  FRAME: The SPICE name for the reference frame in which your
output state vector is to be given. SPK software will automatically
convert data to the frame you specify (if needed). SPICE must
know the named frame. If it is not a built-in frame SPICE must
have sufficient data at run time to construct it.

* Character names work for the target and observer inputs only if built into SPICE or if registered using the
SPICE ID-body name mapping facility. Otherwise use the SPICE numeric ID in quotes, as a character string.

Arguments of SPKEZR - 1

INPUTS

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 37

•  CORRECTION: Specification of what kind of aberration correction
(s), if any, to apply in computing the output state vector.

–  Use ‘LT+S’ to obtain the apparent state of the target as seen by the observer. ‘LT
+S’ invokes light time and stellar aberration corrections.

–  Use ‘NONE’ to obtain the uncorrected (aka “geometric”) state, as given by the
source SPK file or files.

 See the header for subroutine SPKEZR, the document SPK Required
Reading, or the “Fundamental Concepts” tutorial for details. See the
backup charts for examples of aberration correction magnitudes.

•  STATE: This is the Cartesian state vector you requested. Contains 6
components: three for position (x,y,z) and three for velocity (dx, dy,
dz) of the target with respect to the observer. The position
component of the state vector points from the observer to the
target.

•  LIGHT TIME: The one-way light time between the (optionally
aberration-corrected) position of target and the geometric position
of the observer at the specified epoch.

Arguments of SPKEZR - 2

OUTPUTS

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 38

Chaining Data

•  If needed, the SPK software will automatically chain
together two or more state vectors needed to connect your
"target" to your "observer." (See next chart.)

•  SPK software can chain together state vectors provided by
a single SPK file, or by multiple SPK files.

•  In doing the chaining, if needed the SPK software will also
transform the various state vectors into a common
reference frame for addition or subtraction, then transform
the result to the reference frame you have selected for
output.

–  Your selected output reference frame must be one known to the SPICE
system, and your application program must have available all needed
SPICE data to construct this reference frame.

•  See the chaining example on the next page.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 39

Example of Chaining

Planet system's
mass center

(planet barycenter)

Planet's
mass center

Satellite

• •

Your SPK may not contain exactly the
ephemeris you want.

But, if all the needed data are available in
your SPK file, the SPK subsystem will chain
together the position vectors indicated by
the three blue arrows–the data explicitly
contained in an SPK file–to give you the
position vector indicated by the red arrow–
the one you asked for.

This might require the loading of two SPK
files, one containing data for the spacecraft
relative to the planet mass center, and
another containing data for the planet mass
center and the satellite relative to the planet
barycenter.

Planet

Suppose you ask for the position of the satellite
relative to the spacecraft.

Spacecraft

“Planet system” = the planet and all of it’s satellites

Navigation and Ancillary Information Facility

N IF Programming Task

•  Complete steps #3 and #4 in the in-situ
programming lesson.

In-situ Programming Example 40

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 41

•  A reference frame is an ordered set of three
mutually orthogonal (possibly time dependent) unit-
length direction vectors, coupled with a location
called the frame’s “center” or “origin.”

–  SPICE documentation frequently uses the shorthand
“frame.”

– A reference frame is also called a “basis,” but SPICE
documentation very rarely uses this term.

Reference Frames: Definition

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 42

•  A frame’s center is an ephemeris object whose location is
coincident with the origin (0, 0, 0) of a reference frame.

–  The center of the IAU_<body> frame is <body>.
–  The center of any inertial frame is (in SPICE) the solar system barycenter.

»  Even for frames naturally associated with accelerated bodies, such as
MARSIAU.

•  A frame’s center plays little role in specification of states
–  Origin cancels out when doing vector arithmetic

»  Whether positions of objects A and B are specified relative to centers
C1 or C2 makes no difference:

 (A – C1) – (B – C1) = (A – C2) – (B – C2) = A – B
–  But the center *is* used in computing light time to centers of non-inertial

frames
»  When the aberration-corrected state of Titan as seen from the Cassini

orbiter is computed in the body-fixed IAU_Titan frame, light time is
computed from Titan’s center to the Cassini orbiter, and this light
time is used to correct both the state and orientation of Titan.

Reference Frame Center

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 43

•  Inertial
–  Non-rotating

»  With respect to fixed stars
–  Non-accelerating origin

»  Velocity is typically non-zero; acceleration is negligible
–  Examples:

»  J2000 (also called ICRF), B1950
•  Non-Inertial

–  Examples
»  Body-fixed

•  Centered at body center
•  Topocentric

»  Instrument
»  Dynamic frames

•  For example, frames defined by time-dependent vectors

Types of Reference Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 44

•  Mean Equator
–  Model gives mean direction of

north pole of earth accounting
for precession

–  Defines z-axis of frame
–  Defines a mean plane of

equator

•  Mean Ecliptic
–  Model gives mean direction of

the “pole” of the earth's orbit
–  Defines a mean plane of the

ecliptic

•  Intersection of planes at a
particular epoch
determines x-axis

Ecliptic Plane

Frames Defined by Dynamics

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 45

J2000 (ICRF) Frame

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 46

•  Rotating frames rotate with
respect to Inertial Frames.
Directions of axes are not
constant w.r.t. inertial
frames

•  Centers may accelerate
•  Examples:

–  Body-fixed frames are tied to
the surface of a body and
rotate with it.

–  Spacecraft-fixed frames are
defined by the time-varying
orientation of a spacecraft

Rotating Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 47

•  Defined with simple models
for position of spin axis
and motion of prime
meridian

•  Z-axis points to the “north”
side of the invariable plane
of the solar system

•  Invariable plane is
perpendicular to the
angular momentum vector
of the solar system

IAU Bodyfixed Frames

IAU = International Astronomical Union

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 48

•  Topocentric frames are
attached to a surface

•  Z-axis is parallel to the
gravity gradient or
orthogonal to reference
spheroid x points North

z points “up”

y points West
Azimuth (increases
in clockwise
direction, measured
from +x axis)

Elevation (angle between
vector and x-y plane)

Topocentric Frames

One example of a topocentric frame. There
are other types of topocentric frames: for
example, the z-axis could point down, the x-
axis North, and the y-axis East.

Position Vector

Orthogonal
projection of
vector onto x-y
plane

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 49

•  Defined relative to structures
–  Spacecraft
–  Scan platform
–  Instrument

»  For example you might have:
•  z-axis lies along instrument boresight
•  x and y axes defined by instrument characteristics

Spacecraft and Instrument Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 50

•  The state of an object is its position and velocity
relative to a second object
–  In SPICE, these objects are often referred to as “target” and

“observer” or “center”
–  E.g. Saturn relative to Saturn barycenter; Titan relative to Huygens

probe

•  In the SPK subsystem a state is a six dimensional
vector
–  First three components are Cartesian position: x, y, z
–  Second three components are Cartesian velocity: dx/dt, dy/dt, dz/dt
–  Units are km, km/sec

•  A state is specified relative to a reference frame

State Vectors

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 51

•  To perform algebraic operations on states they
must be in the same frame.

•  Position-only frame transformations require only
a rotation* matrix given as a function of time.

»  PB (t) = RA to B(t) PA(t)

•  Position and velocity frame transformations
require that we differentiate the above equation

»  dPB (t) /dt = dRA to B(t)/dt PA(t) + RA to B(t) d PA(t)/dt

•  We can use a 6x6 matrix to combine these two
transformations into a single equation

Transforming States

* Assuming both frames are right-handed

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 52

SB(t) = TA to B(t)SA(t)

where

Si(t) =

and

TA to B(t) =

Pi(t)

dPi(t)/dt i = A or B (
RA to B(t)

dRA to B(t)/dt RA to B(t)

0

()

)

The SPICELIB routines SXFORM and PXFORM return state transformation
and position transformation matrices respectively.

Transforming States

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 53

•  Planetocentric
–  Latitude: measured from X-Y plane
–  Longitude: increases counterclockwise w.r.t. the +Z axis

»  +Z points to the north side of the invariable plane
–  Radius: measured from center of object

•  Planetographic, Geodetic, Planetodetic
–  Tied to a reference surface
–  Latitude: for a point on a reference ellipsoid, angle measured

from X-Y plane to the surface normal at the point of interest.
For other points, equals latitude at the nearest point on the
reference ellipsoid.

–  Longitude
»  -odetic: same as for planetocentric
»  -ographic: longitude of sub-observer point, for a distant,

fixed observer in the J2000 frame, increases with time
–  Height above reference surface

Coordinate Systems

Navigation and Ancillary Information Facility

N IF

Frames Kernel 54

Introduction

What does the FRAMES subsystem do?
•  It establishes relationships between reference frames used

in geometry computations -- it "chains frames together.”
–  We often call this set of relationships a frame tree

•  It connects frames with the sources of their orientation
specifications.

•  Based on these relationships and orientation source
information, it allows SPICE software to compute
transformations between neighboring frames in the "chain,"
and to combine these transformations in the right order,
thus providing an ability to compute orientation of any
frame in the chain with respect to any other frame in the
chain at any time. *

* If the complete set of underlying SPICE data needed to compute the transformation is
available.

Navigation and Ancillary Information Facility

N IF

Frames Kernel 55

Sample Frame Tree

Saturn
Body-fixed

Frame

Inertial
J2000
Frame Earth

Body-fixed
Frame

Titan
Body-fixed

Frame

Topocentric
Frame at the
Landing Site

Cassini
Spacecraft

Frame

ISS NAC
Instrument

Frame

PCK-based
Transformation

PCK-based
Transformation

PCK-based
Transformation

CK-based
Transformation

Fixed offset
Transformation

Fixed offset
Transformation

Navigation and Ancillary Information Facility

N IF

Frames Kernel 56

Frame Classes

Frame class

Inertial

Body-fixed

CK-based

Fixed Offset

Dynamic

 Examples

•  Earth Equator/Equinox of Epoch (J2000, …)
•  Planet Equator/Equinox of Epoch (MARSIAU, ...)
•  Ecliptic of Epoch (ECLIPJ2000, ...)

•  Solar system body IAU frames (IAU_SATURN, …)
•  High accuracy Earth frames (ITRF93, …)
•  High accuracy Moon frames (MOON_PA, MOON_ME)

•  Spacecraft (CASSINI_SC_BUS, …)
•  Moving parts of an instrument (MPL_RA_JOINT1, ...)

•  Instrument mounting alignment (CASSINI_ISS_NAC, …)
•  Topocentric (DSS-14_TOPO, …)

•  Geomagnetic
•  Geocentric Solar Equatorial
•  Planet true equator and equinox of date

Navigation and Ancillary Information Facility

N IF

Frames Kernel 57

Frame class Frame Defined in Orientation data provided in

Inertial Toolkit Toolkit

Body-fixed Toolkit or FK PCK

CK based FK CK

Fixed offset FK FK

Dynamic FK Toolkit, or computed
 using FK, SPK, CK, and/or
 PCK

Frames Class Specifications

Navigation and Ancillary Information Facility

N IF

Frames Kernel 58

SXFORM/PXFORM returns state or position
transformation matrix

CALL SXFORM (‘FROM_FRAME_NAME’, ‘TO_FRAME_NAME’, ET, MAT6x6)
CALL PXFORM (‘FROM_FRAME_NAME’, ‘TO_FRAME_NAME’, ET, MAT3X3)

SPKEZR/SPKPOS returns state or position vector
in specified frame

CALL SPKEZR (BOD, ET, ‘FRAME_NAME’, CORR, OBS, STATE, LT)
CALL SPKPOS (BOD, ET, ‘FRAME_NAME’, CORR, OBS, POSITN, LT)

FRAMES Subsystem Interfaces

The above are FORTRAN examples, using SPICELIB modules.
The same interfaces exist for C, using CSPICE modules, and for Icy and Mice.

Navigation and Ancillary Information Facility

N IF

Frames Kernel 59

•  Refer to “NAIF IDs” Tutorial for an introduction to reference
frame names and IDs

•  Refer to FRAMES.REQ for the list of NAIF
“built in” (hard coded) inertial and body-fixed frames

•  Refer to a project’s Frames Kernel (FK) file for a list of
frames defined for the spacecraft, its subsystems and
instruments

•  Refer to an earth stations FK for a list of frames defined for
the DSN and other stations

•  Refer to the moon FKs for descriptions of the body-fixed
frames defined for the moon

What are the Names of Frames?

Navigation and Ancillary Information Facility

N IF Programming Task

•  Complete steps #5 and #6 from the in-situ
programming lesson.

•  Try step #6 with the RBSP_IGRF_MAG and
RBSP_GSE frames instead. Note: these additional
frames are defined in the RBSP dynamic frame
kernel.

In-situ Programming Example 60

Navigation and Ancillary Information Facility

N IF

Questions?

This concludes the prepared lesson
material for the workshop.

Navigation and Ancillary Information Facility

N IF

Additional Material

(if time permits)

Navigation and Ancillary Information Facility

N IF

Derived Quantities 63

Function Routines

Euler angles
ax ay az

bx by bz

cx cy cz

αx αy αz

βx βy βz

γx γy γz

ax ay az

bx by bz

cx cy cz

0

EUL2M, M2EUL

RAXISA, AXISAR
ROTATE, ROTMAT

Rotation axis
and angle

Matrix Conversions

Q2M, M2Q

Euler angles and Euler angle rates
or
rotation matrix and angular velocity
vector

Transform between

6x6 state transformation
matrix

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix

EUL2XF, XF2EUL
RAV2XF, XF2RAV Transform between

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix
Transform between

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix Transform between SPICE Style
Quaternion

(Q0,Q1,Q2,Q3)

Navigation and Ancillary Information Facility

N IF

Derived Quantities 64

•  Ellipsoids
–  nearest point
–  surface ray intercept
–  surface normal
–  limb
–  slice with a plane
–  altitude of ray w.r.t. to ellipsoid

•  Planes
–  intersect ray and plane

•  Ellipses
–  project onto a plane
–  find semi-axes of an ellipse

–  NEARPT, SUBPNT, DNEARP
–  SURFPT, SINCPT
–  SURFNM
–  EDLIMB
–  INELPL
–  NPEDLN

–  INRYPL

–  PJELPL

–  SAELGV

Function Routine

Geometry

Navigation and Ancillary Information Facility

N IF

Derived Quantities 65

Coordinate Transformation
–  Latitudinal to/from

Rectangular
–  Planetographic to/from

Rectangular
–  R.A. Dec to/from

Rectangular
–  Geodetic to/from

Rectangular
–  Cylindrical to/from

Rectangular
–  Spherical to/from

Rectangular

 Routine
–  LATREC
RECLAT

–  PGRREC
RECPGR

–  RADREC
RECRAD

–  GEOREC
RECGEO

–  CYLREC
RECCYL

–  SPHREC
RECSPH

Position Coordinate Transformations

Navigation and Ancillary Information Facility

N IF

Derived Quantities 66

•  Coordinate
Transformation

–  Latitudinal to/from
Rectangular

–  Planetographic to/from
Rectangular

–  R.A. Dec to/from
Rectangular

–  Geodetic to/from
Rectangular

–  Cylindrical to/from
Rectangular

–  Spherical to/from
Rectangular

•  Jacobian (Derivative)
Matrix Routine
–  DRDLAT
DLATDR

–  DRDPGR
DPGRDR

–  DRDLAT*
DLATDR*

–  DRDGEO
DGEODR

–  DRDCYL
DCYLDR

–  DRDSPH
DSPHDR

* Jacobian matrices for the R.A and Dec
to/from rectangular mappings are
identical to those for the latitudinal to/
from rectangular mappings

Velocity Coordinate Transformations - 1

Navigation and Ancillary Information Facility

N IF

Derived Quantities 67

Velocity Coordinate Transformations - 2

Continues on next page

Navigation and Ancillary Information Facility

N IF

Derived Quantities 68

Velocity Coordinate Transformations - 3

•  The SPICE calls that implement this computation are:
CALL SPKEZR (TARG, ET, REF, CORR, OBS, STATE, LT)
CALL DSPHDR (STATE(1), STATE(2), STATE(3), JACOBI)
CALL MXV (JACOBI, STATE(4), SPHVEL)

•  After these calls, the vector SPHVEL contains the velocity in
spherical coordinates: specifically, the derivatives

(d (r) / dt, d (colatitude) / dt, d (longitude) /dt)

•  Caution: coordinate transformations often have
singularities, so derivatives may not exist everywhere.

–  Exceptions are described in the headers of the SPICE Jacobian matrix
routines.

–  SPICE Jacobian matrix routines signal errors if asked to perform an
invalid computation.

