===========================================================
                                      .___ __  __   
          _________________  __ __  __| _/|__|/  |_ 
         / ___\_` __ \__  \ |  |  \/ __ | | \\_  __\
        / /_/  >  | \// __ \|  |  / /_/ | |  ||  |  
        \___  /|__|  (____  /____/\____ | |__||__|  
       /_____/            \/           \/           
              grep rough audit - static analysis tool
                  v2.8 written by @Wireghoul
=================================[justanotherhacker.com]===
chemps2-1.8.9/CMake/CheMPS2Config.cmake.in-143-    if(${_fext} STREQUAL ${CMAKE_SHARED_LIBRARY_SUFFIX})
chemps2-1.8.9/CMake/CheMPS2Config.cmake.in:144:        include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets-shared.cmake")
chemps2-1.8.9/CMake/CheMPS2Config.cmake.in-145-    else()
chemps2-1.8.9/CMake/CheMPS2Config.cmake.in:146:        include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets-static.cmake")
chemps2-1.8.9/CMake/CheMPS2Config.cmake.in-147-    endif()
##############################################
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h-43-    \f]
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h:44:    where \f$trace_{B}\f$ denotes the summation over the occupations of the orbitals in \f$B\f$. The (nonnegative) eigenspectrum of \f$\mathbf{\rho}_A\f$ directly reflects the quantum entanglement between the orbitals in \f$A\f$ and the ones in \f$B\f$. If there is only one nonzero eigenvalue, \f$A\f$ and \f$B\f$ are not entangled. The total wavefunction can then be factorized: \f$\ket{\Psi} = \ket{\Psi_A}\ket{\Psi_B}\f$. A measurement of an occupation in \f$B\f$ does not influence the outcome of a measurement in \f$A\f$. If there are several nonzero eigenvalues, \f$A\f$ and \f$B\f$ are entangled, and measurements in \f$A\f$ and \f$B\f$ are correlated. The total wavefunction can not be factorized in that case.
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h-45-
##############################################
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h-83-    \f]
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h:84:    where \f$\hat{d}_{i\sigma} = \hat{n}_{i\sigma} (1 - \hat{n}_{i~-\sigma})\f$.
chemps2-1.8.9/CheMPS2/include/chemps2/Correlations.h-85-    
##############################################
chemps2-1.8.9/CheMPS2/include/chemps2/EdmistonRuedenberg.h-77-    \f]
chemps2-1.8.9/CheMPS2/include/chemps2/EdmistonRuedenberg.h:78:    where the (continuous) variable \f$z_k\f$ denotes the optimal position of orbital \f$k\f$. In order to fix translational invariance and normalization of the solution, the constraints \f$\sum_i z_i = 0\f$ and \f$\vec{z}^T \vec{z} = 1\f$ are imposed. The cost function can be rewritten as
chemps2-1.8.9/CheMPS2/include/chemps2/EdmistonRuedenberg.h-79-    \f[