=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== derivations-0.56.20180123.1/tex/eigen.tex-2061-\] derivations-0.56.20180123.1/tex/eigen.tex:2062:where $V^{-1} = V^{*}$ because this~$V$ is unitary derivations-0.56.20180123.1/tex/eigen.tex-2063-(\S~\ref{mtxinv:465}). The equation's adjoint is ############################################## derivations-0.56.20180123.1/tex/noth.tex-373-of all $B(\rho e^{i\phi})$ in the Argand range plane derivations-0.56.20180123.1/tex/noth.tex:374:(Fig.~\ref{alggeo:225:fig}), where $z=\rho e^{i\phi}$,~$\rho$ is held derivations-0.56.20180123.1/tex/noth.tex-375-constant, and~$\phi$ is variable. Because $e^{i(\phi+n2\pi)} = ############################################## derivations-0.56.20180123.1/tex/trig.tex-487- Printing by hand, one customarily writes a general vector derivations-0.56.20180123.1/tex/trig.tex:488: like~$\ve u$ as ``$\,\vec u$\,'' or just ``\,$\overline u$\,'', and a derivations-0.56.20180123.1/tex/trig.tex-489- unit vector like~$\vu x$ as ``$\,\hat x$\,''. ############################################## derivations-0.56.20180123.1/tex/trig.tex-666-\footnote{ derivations-0.56.20180123.1/tex/trig.tex:667: The ``$\,'\,$'' mark is pronounced ``prime'' or ``primed'' (for no derivations-0.56.20180123.1/tex/trig.tex-668- especially good reason of which the author is aware, but anyway, ############################################## derivations-0.56.20180123.1/tex/trig.tex-1485- Reading closely, one might note that \S~\ref{alggeo:323.20} uses derivations-0.56.20180123.1/tex/trig.tex:1486: the~``$<$'' sign rather than the~``$\le$,'' but that's all right. See derivations-0.56.20180123.1/tex/trig.tex-1487- \S~\ref{intro:284.1}. ############################################## derivations-0.56.20180123.1/tex/vector.tex-2298-\ei derivations-0.56.20180123.1/tex/vector.tex:2299:where the parameter~$k$ of \S~\ref{vector:280.05} has been set to $k=0$. derivations-0.56.20180123.1/tex/vector.tex-2300-Figure~\ref{vector:280:fig2} depicts the construction described. ############################################## derivations-0.56.20180123.1/tex/taylor.tex-1094-which $\Im[z] \neq 0$---then consider that the singularities of $\tan z$ derivations-0.56.20180123.1/tex/taylor.tex:1095:occur where $\cos z=0$, which by Euler's formula, derivations-0.56.20180123.1/tex/taylor.tex:1096:eqn.~\ref{cexp:250:cos}, occurs where $\exp[+iz] = \exp[-iz]$. This in derivations-0.56.20180123.1/tex/taylor.tex-1097-turn is possible only if $\left|\exp[+iz]\right| = ############################################## derivations-0.56.20180123.1/tex/taylor.tex-1176-nonanalytic point of $f(z)$ or in the trivial case that~$f(z)$ were derivations-0.56.20180123.1/tex/taylor.tex:1177:everywhere constant, this always works---even where $[df/dz]_{z=z_o}=0$. derivations-0.56.20180123.1/tex/taylor.tex-1178- ############################################## derivations-0.56.20180123.1/tex/taylor.tex-1619-\] derivations-0.56.20180123.1/tex/taylor.tex:1620:where $m+1=n$. Expanding $f(z)$ in a Taylor derivations-0.56.20180123.1/tex/taylor.tex-1621-series~(\ref{taylor:310:20}) about $z=z_o$, ############################################## derivations-0.56.20180123.1/tex/cubic.tex-504-The double edge case, or \emph{corner case,} arises where the two edges derivations-0.56.20180123.1/tex/cubic.tex:505:meet---where $P=0$ and $P^3=-Q^2$, or equivalently where $P=0$ and derivations-0.56.20180123.1/tex/cubic.tex-506-$Q=0$. At the corner, the trouble is that $w^3 = 0$ and that no ############################################## derivations-0.56.20180123.1/tex/mtxinv.tex-485-\bq{mtxinv:245:11} derivations-0.56.20180123.1/tex/mtxinv.tex:486: \mbox{$A \ve x = \ve b$, where $\ve b = 0$ or $r = m$, or both;} derivations-0.56.20180123.1/tex/mtxinv.tex-487-\eq ############################################## derivations-0.56.20180123.1/tex/mtxinv.tex-1535-Changing the variable back and (because we are conjecturing and can do derivations-0.56.20180123.1/tex/mtxinv.tex:1536:as we like), altering the~``$\approx$'' sign to~``$=$,'' derivations-0.56.20180123.1/tex/mtxinv.tex-1537-\bq{mtxinv:320:50} ############################################## derivations-0.56.20180123.1/tex/mtxinv.tex-1661-for which $\ve x + \Delta\ve x$ achieves minimal squared residual norm derivations-0.56.20180123.1/tex/mtxinv.tex:1662:(note that it's ``$<$'' this time, not ``$\le$'' as in the conjecture's derivations-0.56.20180123.1/tex/mtxinv.tex-1663-first point). Distributing factors and canceling like terms, ############################################## derivations-0.56.20180123.1/tex/mtxinv.tex-1794-\eq derivations-0.56.20180123.1/tex/mtxinv.tex:1795:where $B=I_m$ in the first case and $C=I_n$ in the last. It does not derivations-0.56.20180123.1/tex/mtxinv.tex-1796-intend to use the full~(\ref{mtxinv:psinv}). If both $r<m$ and ############################################## derivations-0.56.20180123.1/tex/matrix.tex-1056- derivations-0.56.20180123.1/tex/matrix.tex:1057:The name ``rank-$r$'' implies that~$I_r$ has a ``rank'' of~$r$, and derivations-0.56.20180123.1/tex/matrix.tex-1058-indeed it does. For the moment, however, we will discern the attribute ############################################## derivations-0.56.20180123.1/tex/matrix.tex-1211- As a matter of definition, some authors~\cite{Lay} forbid derivations-0.56.20180123.1/tex/matrix.tex:1212: $T_{[i\lra i]}$ as an elementary operator, where $j=i$, since derivations-0.56.20180123.1/tex/matrix.tex-1213- after all $T_{[i\lra i]}=I$; which is to say that the ############################################## derivations-0.56.20180123.1/tex/matrix.tex-1869-\eqa derivations-0.56.20180123.1/tex/matrix.tex:1870:(where $P^{*}=P^T$ because~$P$ has only real elements). The inverse, derivations-0.56.20180123.1/tex/matrix.tex-1871-transpose and adjoint of the general interchange operator are thus the ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-222- Few readers attempting this book will need to be reminded that~$<$ derivations-0.56.20180123.1/tex/alggeo.tex:223: means ``is less than,'' that~$>$ means ``is greater than,'' or derivations-0.56.20180123.1/tex/alggeo.tex-224- that~$\le$ and~$\ge$ respectively mean ``is less than or equal to'' ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-276-\] derivations-0.56.20180123.1/tex/alggeo.tex:277:which means, ``in place of~$P$, put~$Q$''; or, ``let~$Q$ now equal~$P$.'' derivations-0.56.20180123.1/tex/alggeo.tex-278-For example, if $a^2 + b^2 = c^2$, then the change of variable $2\mu \la a$ ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-585-Admittedly it is easier for the beginner to read derivations-0.56.20180123.1/tex/alggeo.tex:586:``$f(1)+f(2)+\cdots+f(N)$'' than ``$\sum_{k=1}^{N} f(k)$.'' However, derivations-0.56.20180123.1/tex/alggeo.tex-587-experience shows the latter notation to be extremely useful in ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-679- % here. derivations-0.56.20180123.1/tex/alggeo.tex:680: The symbol~``$\equiv$'' means~``$=$'', but further usually derivations-0.56.20180123.1/tex/alggeo.tex-681- indicates that the expression on its right serves to define the ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-1110-which is not one but several equations---one equation for each value derivations-0.56.20180123.1/tex/alggeo.tex:1111:of~$n$, where $n=N,N-1,N-2,\ldots$\,. The dividend $B(z)$ and the divisor derivations-0.56.20180123.1/tex/alggeo.tex-1112-$A(z)$ stay the same from one~$n$ to the next, but the quotient $Q_n(z)$ ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-1192- The notations~$K_o$, $a_k$ and~$z^k$ are usually pronounced, derivations-0.56.20180123.1/tex/alggeo.tex:1193: respectively, as ``$K$ naught,'' ``$a$ sub $k$'' and ``$z$ to derivations-0.56.20180123.1/tex/alggeo.tex-1194- the~$k$'' (or, more fully, ``$z$ to the $k$th power'')---at least in ############################################## derivations-0.56.20180123.1/tex/alggeo.tex-1860-\footnote{% derivations-0.56.20180123.1/tex/alggeo.tex:1861: Applied mathematicians tend to less enthusiasm than professional derivations-0.56.20180123.1/tex/alggeo.tex-1862- mathematicians do over set notation like the membership symbol~$\in$, ############################################## derivations-0.56.20180123.1/tex/integ.tex-238-\] derivations-0.56.20180123.1/tex/integ.tex:239:where the notation $k|_{\tau=\mr{0x10}}$ indicates the value of~$k$ when derivations-0.56.20180123.1/tex/integ.tex-240-$\tau=\mr{0x10}$. Then ############################################## derivations-0.56.20180123.1/tex/integ.tex-2053-\end{figure} derivations-0.56.20180123.1/tex/integ.tex:2054:This function is zero everywhere except at $t=0$, where it is infinite, derivations-0.56.20180123.1/tex/integ.tex-2055-with the property that ############################################## derivations-0.56.20180123.1/tex/drvtv.tex-227-which is preferable to writing na\"ively that $f(z)/g(z)|_{z=0} = derivations-0.56.20180123.1/tex/drvtv.tex:228:0/0$ (the ``$|_{z=0}$'' meaning, ``given that, or evaluated when, derivations-0.56.20180123.1/tex/drvtv.tex:229:$z=0$''). The symbol ``$\lim_Q$'' is short for ``in the limit as~$Q$,'' derivations-0.56.20180123.1/tex/drvtv.tex:230:so ``$\lim_{z\rightarrow 0}$'' says, ``in the limit as~$z$ derivations-0.56.20180123.1/tex/drvtv.tex-231-approaches~0.'' ############################################## derivations-0.56.20180123.1/tex/drvtv.tex-1083-expedient, the professional may find himself unable to summon greater derivations-0.56.20180123.1/tex/drvtv.tex:1084:enthusiasm for the infinitesimal than this. derivations-0.56.20180123.1/tex/drvtv.tex-1085- ############################################## derivations-0.56.20180123.1/tex/drvtv.tex-1752-\footnote{ derivations-0.56.20180123.1/tex/drvtv.tex:1753: The notation $P|_Q$ means ``$P$ when $Q$,'' ``$P$, given $Q$,'' or derivations-0.56.20180123.1/tex/drvtv.tex-1754- ``$P$ evaluated at $Q$.'' Sometimes it is alternately ############################################## derivations-0.56.20180123.1/tex/gjrank.tex-706- row, where $p \ge i$ and $q \ge i$. (The easiest choice may simply derivations-0.56.20180123.1/tex/gjrank.tex:707: be~$\tdi_{ii}$, where $p=q=i$, if $\tdi_{ii} \neq 0$; but any derivations-0.56.20180123.1/tex/gjrank.tex-708- nonzero element from the $i$th row downward can in general be ############################################## derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-20-# (By the way, I thought about extending the script to autogenerate the derivations-0.56.20180123.1/debian/helper/deprecated/make-readme:21:# long description in debian/control. However, overenthusiasm has derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-22-# bounds. The long description is twenty times as important as the ############################################## derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-149-sub format_text (@) { derivations-0.56.20180123.1/debian/helper/deprecated/make-readme:150: my $file = `$cmd_tempfile`; chomp $file; derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-151- open FILE, '>', $file; ############################################## derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-153- close FILE; derivations-0.56.20180123.1/debian/helper/deprecated/make-readme:154: my @ret = `$cmd_fmt $file`; derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-155- unlink $file; ############################################## derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-229-# footer. derivations-0.56.20180123.1/debian/helper/deprecated/make-readme:230:my $date = `$cmd_date '$mp_date $time_dflt'`; chomp $date; derivations-0.56.20180123.1/debian/helper/deprecated/make-readme-231-my @head = ( ############################################## derivations-0.56.20180123.1/debian/helper/update-date-78- $ind = $arg[0] =~ /:/ derivations-0.56.20180123.1/debian/helper/update-date:79: ? `date -ud'$arg[0]'` : `date -ud'$arg[0] 00:00:00 +0000'`, derivations-0.56.20180123.1/debian/helper/update-date-80- !$? derivations-0.56.20180123.1/debian/helper/update-date-81-) or die "usage: $0 date\n"; derivations-0.56.20180123.1/debian/helper/update-date:82:my $date = `date -ud'$ind' +'%e %B %Y'`; $date =~ s/^\s*//; chomp $date; derivations-0.56.20180123.1/debian/helper/update-date:83:my $year = `date -ud'$ind' +'%Y'` ; $year =~ s/^\s*//; chomp $year; derivations-0.56.20180123.1/debian/helper/update-date:84:my $verd = `date -ud'$ind' +'%Y%m%d'` ; $verd =~ s/^\s*//; chomp $verd; derivations-0.56.20180123.1/debian/helper/update-date:85:my $cld = `date -ud'$ind' -R` ; $cld =~ s/^\s*//; chomp $cld ; derivations-0.56.20180123.1/debian/helper/update-date-86-