=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== r-cran-brms-2.14.4/vignettes/brms_threading.Rmd-252-varying intercept model with $`r N`$ data observation which are grouped into r-cran-brms-2.14.4/vignettes/brms_threading.Rmd:253:$`r G`$ groups. Each data item has $`r P`$ continuous covariates. The r-cran-brms-2.14.4/vignettes/brms_threading.Rmd-254-simulation code for the fake data can be found in the appendix and it's first ############################################## r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd-61-model, which will serve as our baseline model. For observed number of events $y$ r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd:62:(`incidence` in our case) and total number of trials $T$ (`size`), the r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd-63-probability mass function of the binomial distribution is defined as ############################################## r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd-252-[^phi]: The presented post-processing functions need to be adjusted if you r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd:253:predict `phi` in your model as well by writing `phi <- prep$dpars$phi[, i]`. r-cran-brms-2.14.4/vignettes/brms_customfamilies.Rmd-254-If you want to support `pointwise` evaluation as well, please write ############################################## r-cran-brms-2.14.4/vignettes/brms_families.Rmd-208-$$ r-cran-brms-2.14.4/vignettes/brms_families.Rmd:209:where $\rho_p$ is given by $\rho_p(x) = x (p - I_{x < 0})$ and $I_A$ is the r-cran-brms-2.14.4/vignettes/brms_families.Rmd-210-indicator function of set $A$. The parameter $\sigma$ is a positive scale ############################################## r-cran-brms-2.14.4/R/data-predictor.R-133- if (new) { r-cran-brms-2.14.4/R/data-predictor.R:134: # prepare rasm for use with new data r-cran-brms-2.14.4/R/data-predictor.R:135: rasm <- s2rPred(sm, data) r-cran-brms-2.14.4/R/data-predictor.R-136- } else { r-cran-brms-2.14.4/R/data-predictor.R:137: rasm <- mgcv::smooth2random(sm, names(data), type = 2) r-cran-brms-2.14.4/R/data-predictor.R-138- } ############################################## r-cran-brms-2.14.4/R/predictor.R-55- # evaluate non-linear predictor r-cran-brms-2.14.4/R/predictor.R:56: eta <- try(eval(prep$nlform, args), silent = TRUE) r-cran-brms-2.14.4/R/predictor.R-57- if (is(eta, "try-error")) { ############################################## r-cran-brms-2.14.4/NEWS.md-256-* Model fit criteria computed via `add_criterion` are now r-cran-brms-2.14.4/NEWS.md:257:stored in the `brmsfit$criteria` slot. r-cran-brms-2.14.4/NEWS.md-258-* Deprecate `resp_cat` in favor of `resp_thres`. ############################################## r-cran-brms-2.14.4/inst/doc/brms_threading.Rmd-252-varying intercept model with $`r N`$ data observation which are grouped into r-cran-brms-2.14.4/inst/doc/brms_threading.Rmd:253:$`r G`$ groups. Each data item has $`r P`$ continuous covariates. The r-cran-brms-2.14.4/inst/doc/brms_threading.Rmd-254-simulation code for the fake data can be found in the appendix and it's first ############################################## r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd-61-model, which will serve as our baseline model. For observed number of events $y$ r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd:62:(`incidence` in our case) and total number of trials $T$ (`size`), the r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd-63-probability mass function of the binomial distribution is defined as ############################################## r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd-252-[^phi]: The presented post-processing functions need to be adjusted if you r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd:253:predict `phi` in your model as well by writing `phi <- prep$dpars$phi[, i]`. r-cran-brms-2.14.4/inst/doc/brms_customfamilies.Rmd-254-If you want to support `pointwise` evaluation as well, please write ############################################## r-cran-brms-2.14.4/inst/doc/brms_families.Rmd-208-$$ r-cran-brms-2.14.4/inst/doc/brms_families.Rmd:209:where $\rho_p$ is given by $\rho_p(x) = x (p - I_{x < 0})$ and $I_A$ is the r-cran-brms-2.14.4/inst/doc/brms_families.Rmd-210-indicator function of set $A$. The parameter $\sigma$ is a positive scale ############################################## r-cran-brms-2.14.4/debian/tests/run-unit-test-6-if [ "$AUTOPKGTEST_TMP" = "" ] ; then r-cran-brms-2.14.4/debian/tests/run-unit-test:7: AUTOPKGTEST_TMP=`mktemp -d /tmp/${debname}-test.XXXXXX` r-cran-brms-2.14.4/debian/tests/run-unit-test-8- trap "rm -rf $AUTOPKGTEST_TMP" 0 INT QUIT ABRT PIPE TERM