=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== r-cran-flexmix-2.3-17/vignettes/regression-examples.Rnw-161-$\mathcal{C} = \{c_s \,|\, s = 1,\ldots S\}$ of the $S$ components is r-cran-flexmix-2.3-17/vignettes/regression-examples.Rnw:162:determined where $c_s = \{s^* = 1,\ldots,S \,|\, c(s^*) = c(s)\}$. A r-cran-flexmix-2.3-17/vignettes/regression-examples.Rnw-163-similar splitting is possible for the variance of mixtures of Gaussian ############################################## r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw-163-\end{eqnarray*} r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw:164:where $\mu_k(\mathbf{x}) = \mathbf{x}'\bm{\alpha}_k$ and $N(\mu, \sigma^2)$ r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw-165-is the normal distribution. ############################################## r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw-371-\end{equation*} r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw:372:where $\lambda_k = e^{\mathbf{x}'\bm{\alpha}_k}$ for $k = 1,2$ and r-cran-flexmix-2.3-17/vignettes/bootstrapping.Rnw-373-$P(\lambda)$ is the Poisson distribution. ############################################## r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-240-\end{align*} r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw:241:where $c(k) = \{c = 1,\ldots, C: k \in K_c\}$. r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-242- ############################################## r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-253-\end{align*} r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw:254:where $v(k) = \{v = 1,\ldots,V: k \in K_v\}$. The nesting structure of r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-255-the component specific parameters is also described in ############################################## r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-444-the form twice the negative loglikelihood plus number of parameters r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw:445:times $k$ where $k=2$ for the AIC and $k$ equals the logarithm of the r-cran-flexmix-2.3-17/vignettes/mixture-regressions.Rnw-446-number of observations for the BIC. The ICL is the same as the BIC ############################################## r-cran-flexmix-2.3-17/R/models.R-14- list(call = sys.call(), offset = offset, r-cran-flexmix-2.3-17/R/models.R:15: control = eval(formals(glm.fit)$control), r-cran-flexmix-2.3-17/R/models.R-16- method = "weighted.glm.fit")) ############################################## r-cran-flexmix-2.3-17/R/refit.R-533- list(call = sys.call(), offset = offset, r-cran-flexmix-2.3-17/R/refit.R:534: control = eval(formals(glm.fit)$control), r-cran-flexmix-2.3-17/R/refit.R-535- method = "weighted.glm.fit")) ############################################## r-cran-flexmix-2.3-17/inst/doc/regression-examples.Rnw-161-$\mathcal{C} = \{c_s \,|\, s = 1,\ldots S\}$ of the $S$ components is r-cran-flexmix-2.3-17/inst/doc/regression-examples.Rnw:162:determined where $c_s = \{s^* = 1,\ldots,S \,|\, c(s^*) = c(s)\}$. A r-cran-flexmix-2.3-17/inst/doc/regression-examples.Rnw-163-similar splitting is possible for the variance of mixtures of Gaussian ############################################## r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw-163-\end{eqnarray*} r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw:164:where $\mu_k(\mathbf{x}) = \mathbf{x}'\bm{\alpha}_k$ and $N(\mu, \sigma^2)$ r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw-165-is the normal distribution. ############################################## r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw-371-\end{equation*} r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw:372:where $\lambda_k = e^{\mathbf{x}'\bm{\alpha}_k}$ for $k = 1,2$ and r-cran-flexmix-2.3-17/inst/doc/bootstrapping.Rnw-373-$P(\lambda)$ is the Poisson distribution. ############################################## r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-240-\end{align*} r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw:241:where $c(k) = \{c = 1,\ldots, C: k \in K_c\}$. r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-242- ############################################## r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-253-\end{align*} r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw:254:where $v(k) = \{v = 1,\ldots,V: k \in K_v\}$. The nesting structure of r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-255-the component specific parameters is also described in ############################################## r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-444-the form twice the negative loglikelihood plus number of parameters r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw:445:times $k$ where $k=2$ for the AIC and $k$ equals the logarithm of the r-cran-flexmix-2.3-17/inst/doc/mixture-regressions.Rnw-446-number of observations for the BIC. The ICL is the same as the BIC