=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-343-$$ r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:344:for $x \in \R$, where $\widehat{s}_{j+1} = \Del \lest_{j+1} / \Del x_{j+1}$ and $\Del v_{j+1} := v_{j+1} - v_j$, $1 \le j < m$, for any vector $\ve{v} \in \R^m$. Finally, the density estimate at $x$ is then simply $\est = \exp \lest$, i.e.\ $\est = 0$ outside $[x_1,x_m]$. These two functions are implemented in \code{evaluateLogConDens}. Computation of additional functions at a given point $x$ is discussed in Section~\ref{sec: evaluation}. r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-345- ############################################## r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-812-$$ r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:813:where $\SupN{f}:=\sup_{x \in \R}|f(x)|$ for any function $f: \R \to \R$. The limiting distribution of $\mathbb K_n$ r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-814-and the corresponding asymptotic test can be found in \cite{durbin_73}. ############################################## r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1099- \earr\right. r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:1100:\eea where $\Del v_{j+1} := v_{j+1} - v_j$ for any $\ve{v} \in \R^m$. r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1101-Suppose further that $f := \exp(\varphi)$ is a probability density on $\R$ and let $F$ be the corresponding distribution function. Then $F(x_1) = F_1 := 0$, and ############################################## r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1152-$$ r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:1153:where $i_0 = \min\{m-1 \, , \ \max\{i \ : \ x_i \le t\}\}$. r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1154- ############################################## r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-343-$$ r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:344:for $x \in \R$, where $\widehat{s}_{j+1} = \Del \lest_{j+1} / \Del x_{j+1}$ and $\Del v_{j+1} := v_{j+1} - v_j$, $1 \le j < m$, for any vector $\ve{v} \in \R^m$. Finally, the density estimate at $x$ is then simply $\est = \exp \lest$, i.e.\ $\est = 0$ outside $[x_1,x_m]$. These two functions are implemented in \code{evaluateLogConDens}. Computation of additional functions at a given point $x$ is discussed in Section~\ref{sec: evaluation}. r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-345- ############################################## r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-812-$$ r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:813:where $\SupN{f}:=\sup_{x \in \R}|f(x)|$ for any function $f: \R \to \R$. The limiting distribution of $\mathbb K_n$ r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-814-and the corresponding asymptotic test can be found in \cite{durbin_73}. ############################################## r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1099- \earr\right. r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:1100:\eea where $\Del v_{j+1} := v_{j+1} - v_j$ for any $\ve{v} \in \R^m$. r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1101-Suppose further that $f := \exp(\varphi)$ is a probability density on $\R$ and let $F$ be the corresponding distribution function. Then $F(x_1) = F_1 := 0$, and ############################################## r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1152-$$ r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:1153:where $i_0 = \min\{m-1 \, , \ \max\{i \ : \ x_i \le t\}\}$. r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1154-