===========================================================
                                      .___ __  __   
          _________________  __ __  __| _/|__|/  |_ 
         / ___\_` __ \__  \ |  |  \/ __ | | \\_  __\
        / /_/  >  | \// __ \|  |  / /_/ | |  ||  |  
        \___  /|__|  (____  /____/\____ | |__||__|  
       /_____/            \/           \/           
              grep rough audit - static analysis tool
                  v2.8 written by @Wireghoul
=================================[justanotherhacker.com]===
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-343-$$
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:344:for $x \in \R$, where $\widehat{s}_{j+1} = \Del \lest_{j+1} / \Del x_{j+1}$ and $\Del v_{j+1} := v_{j+1} - v_j$, $1 \le j < m$, for any vector $\ve{v} \in \R^m$. Finally, the density estimate at $x$ is then simply $\est = \exp \lest$, i.e.\ $\est = 0$ outside $[x_1,x_m]$. These two functions are implemented in \code{evaluateLogConDens}. Computation of additional functions at a given point $x$ is discussed in Section~\ref{sec: evaluation}.
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-345-
##############################################
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-812-$$
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:813:where $\SupN{f}:=\sup_{x \in \R}|f(x)|$ for any function $f: \R \to \R$. The limiting distribution of $\mathbb K_n$ 
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-814-and the corresponding asymptotic test can be found in \cite{durbin_73}.
##############################################
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1099-        \earr\right.
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:1100:\eea where $\Del v_{j+1} := v_{j+1} - v_j$ for any $\ve{v} \in \R^m$.
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1101-Suppose further that $f := \exp(\varphi)$ is a probability density on $\R$ and let $F$ be the corresponding distribution function. Then $F(x_1) = F_1 := 0$, and
##############################################
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1152-$$
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw:1153:where $i_0 = \min\{m-1 \, , \ \max\{i \ : \ x_i \le t\}\}$.
r-cran-logcondens-2.1.5/inst/doc/logcondens.Rnw-1154-
##############################################
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-343-$$
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:344:for $x \in \R$, where $\widehat{s}_{j+1} = \Del \lest_{j+1} / \Del x_{j+1}$ and $\Del v_{j+1} := v_{j+1} - v_j$, $1 \le j < m$, for any vector $\ve{v} \in \R^m$. Finally, the density estimate at $x$ is then simply $\est = \exp \lest$, i.e.\ $\est = 0$ outside $[x_1,x_m]$. These two functions are implemented in \code{evaluateLogConDens}. Computation of additional functions at a given point $x$ is discussed in Section~\ref{sec: evaluation}.
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-345-
##############################################
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-812-$$
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:813:where $\SupN{f}:=\sup_{x \in \R}|f(x)|$ for any function $f: \R \to \R$. The limiting distribution of $\mathbb K_n$ 
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-814-and the corresponding asymptotic test can be found in \cite{durbin_73}.
##############################################
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1099-        \earr\right.
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:1100:\eea where $\Del v_{j+1} := v_{j+1} - v_j$ for any $\ve{v} \in \R^m$.
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1101-Suppose further that $f := \exp(\varphi)$ is a probability density on $\R$ and let $F$ be the corresponding distribution function. Then $F(x_1) = F_1 := 0$, and
##############################################
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1152-$$
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw:1153:where $i_0 = \min\{m-1 \, , \ \max\{i \ : \ x_i \le t\}\}$.
r-cran-logcondens-2.1.5/vignettes/logcondens.Rnw-1154-