=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-508-% r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw:509:where $\bm z_i$ is the $i$'th row of a design matrix $\bm Z$ without a leading column for an intercept and $\sigma^* = \exp(\mu)$, then r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-510-\begin{equation*} ############################################## r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-621-\end{equation*} r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw:622:where $q = \lambda^{-2}\exp(\lambda \eta)$ and $G(\cdot; \alpha)$ denotes the Gamma distribution with shape parameter $\alpha$ and unit rate parameter and $\Phi$ denotes the cumulative standard normal distribution function. r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-623- ############################################## r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-631-\end{equation*} r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw:632:where $k=\lambda^{-2}$, $\Gamma(\cdot)$ is the gamma function and $\phi$ is the standard normal density function. r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-633- ############################################## r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-683- r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw:684:The NR algorithm in \pkg{ordinal} has two convergence criteria: (1) an absolute criterion requesting that $\max | \bm g(\bm\psi^{(i)}; \bm y) | < \tau_1$ and (2) a relative criterion requesting that $\max | \bm h^{(i)} | < \tau_2$ where the default thresholds are $\tau_1 = \tau_2 = 10^{-6}$. r-cran-ordinal-2019.12-10/vignettes/clm_article.Rnw-685- ############################################## r-cran-ordinal-2019.12-10/R/clm.frames.R-195- ## (parent.frame(2)) to get them evaluated properly: r-cran-ordinal-2019.12-10/R/clm.frames.R:196: forms <- list(eval(mc$formula, envir=envir)) r-cran-ordinal-2019.12-10/R/clm.frames.R:197: if(!is.null(mc$scale)) forms$scale <- eval(mc$scale, envir=envir) r-cran-ordinal-2019.12-10/R/clm.frames.R:198: if(!is.null(mc$nominal)) forms$nominal <- eval(mc$nominal, envir=envir) r-cran-ordinal-2019.12-10/R/clm.frames.R-199- ## get the environment of the formula. If this does not have an ############################################## r-cran-ordinal-2019.12-10/R/clm.predict.R-97- for(i in off.num) offset <- offset + r-cran-ordinal-2019.12-10/R/clm.predict.R:98: eval(attr(object$terms, "variables")[[i + 1]], newdata) r-cran-ordinal-2019.12-10/R/clm.predict.R-99- y <- model.response(mf) ############################################## r-cran-ordinal-2019.12-10/R/clm.predict.R-143- for(i in off.num) Soff <- Soff + r-cran-ordinal-2019.12-10/R/clm.predict.R:144: eval(attr(object$S.terms, "variables")[[i + 1]], newdata) r-cran-ordinal-2019.12-10/R/clm.predict.R-145- } ############################################## r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-508-% r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw:509:where $\bm z_i$ is the $i$'th row of a design matrix $\bm Z$ without a leading column for an intercept and $\sigma^* = \exp(\mu)$, then r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-510-\begin{equation*} ############################################## r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-621-\end{equation*} r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw:622:where $q = \lambda^{-2}\exp(\lambda \eta)$ and $G(\cdot; \alpha)$ denotes the Gamma distribution with shape parameter $\alpha$ and unit rate parameter and $\Phi$ denotes the cumulative standard normal distribution function. r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-623- ############################################## r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-631-\end{equation*} r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw:632:where $k=\lambda^{-2}$, $\Gamma(\cdot)$ is the gamma function and $\phi$ is the standard normal density function. r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-633- ############################################## r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-683- r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw:684:The NR algorithm in \pkg{ordinal} has two convergence criteria: (1) an absolute criterion requesting that $\max | \bm g(\bm\psi^{(i)}; \bm y) | < \tau_1$ and (2) a relative criterion requesting that $\max | \bm h^{(i)} | < \tau_2$ where the default thresholds are $\tau_1 = \tau_2 = 10^{-6}$. r-cran-ordinal-2019.12-10/inst/doc/clm_article.Rnw-685- ############################################## r-cran-ordinal-2019.12-10/debian/tests/run-unit-test-6-if [ "$AUTOPKGTEST_TMP" = "" ] ; then r-cran-ordinal-2019.12-10/debian/tests/run-unit-test:7: AUTOPKGTEST_TMP=`mktemp -d /tmp/${debname}-test.XXXXXX` r-cran-ordinal-2019.12-10/debian/tests/run-unit-test-8- trap "rm -rf $AUTOPKGTEST_TMP" 0 INT QUIT ABRT PIPE TERM