=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw-700-\end{eqnarray} r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw:701:where $\nu$ is the sum of the weights, $\nu =\sum^n_{i=1}{w_i}$. r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw-702-Again, the multiplication factors $c_{r.ccf}$ and $c_{r.sscf}$ ############################################## r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw-810-\item{Obtain the ``principal component decomposition'' of $\vv{Y}$ by decomposing $\vv{U}=\vv{E}\vv{\Lambda}\vv{E}^{\top}$ r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw:811: where $\vv{\Lambda}$ is a diagonal matrix $\vv{\Lambda}=\diag(\lambda_1,\ldots,\lambda_p)$ with the eigenvalues $\lambda_j$ of $\vv{U}$ and $\vv{E}$ is a matrix with columns the eigenvalues $\vv{e}_j$ of $\vv{U}$.} r-cran-rrcov-1.5-5/vignettes/rrcov.Rnw-812-\item{Define $\zv_i=\vv{E}^{\top}\yv_i=\vv{E}^{\top}\vv{D}^{-1}\xv_i$ and $\vv{A}=\vv{D}\vv{E}$. ############################################## r-cran-rrcov-1.5-5/R/T2.test.R-155- r-cran-rrcov-1.5-5/R/T2.test.R:156: if(is.matrix(eval(m$data, parent.frame()))) r-cran-rrcov-1.5-5/R/T2.test.R-157- m$data <- as.data.frame(data) ############################################## r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw-700-\end{eqnarray} r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw:701:where $\nu$ is the sum of the weights, $\nu =\sum^n_{i=1}{w_i}$. r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw-702-Again, the multiplication factors $c_{r.ccf}$ and $c_{r.sscf}$ ############################################## r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw-810-\item{Obtain the ``principal component decomposition'' of $\vv{Y}$ by decomposing $\vv{U}=\vv{E}\vv{\Lambda}\vv{E}^{\top}$ r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw:811: where $\vv{\Lambda}$ is a diagonal matrix $\vv{\Lambda}=\diag(\lambda_1,\ldots,\lambda_p)$ with the eigenvalues $\lambda_j$ of $\vv{U}$ and $\vv{E}$ is a matrix with columns the eigenvalues $\vv{e}_j$ of $\vv{U}$.} r-cran-rrcov-1.5-5/inst/doc/rrcov.Rnw-812-\item{Define $\zv_i=\vv{E}^{\top}\yv_i=\vv{E}^{\top}\vv{D}^{-1}\xv_i$ and $\vv{A}=\vv{D}\vv{E}$. ############################################## r-cran-rrcov-1.5-5/debian/tests/run-unit-test-6-if [ "$AUTOPKGTEST_TMP" = "" ] ; then r-cran-rrcov-1.5-5/debian/tests/run-unit-test:7: AUTOPKGTEST_TMP=`mktemp -d /tmp/${debname}-test.XXXXXX` r-cran-rrcov-1.5-5/debian/tests/run-unit-test-8- trap "rm -rf $AUTOPKGTEST_TMP" 0 INT QUIT ABRT PIPE TERM