===========================================================
                                      .___ __  __   
          _________________  __ __  __| _/|__|/  |_ 
         / ___\_` __ \__  \ |  |  \/ __ | | \\_  __\
        / /_/  >  | \// __ \|  |  / /_/ | |  ||  |  
        \___  /|__|  (____  /____/\____ | |__||__|  
       /_____/            \/           \/           
              grep rough audit - static analysis tool
                  v2.8 written by @Wireghoul
=================================[justanotherhacker.com]===
r-cran-spam-2.5-1/vignettes/spam.Rmd-169-To be more specific about one of `spam`'s main features, assume we need to calculate $\boldsymbol{A}^{-1}\boldsymbol{b}$ with $\boldsymbol{A}$ a symmetric positive definite matrix featuring some sparsity structure, which is usually accomplished by solving $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$.
r-cran-spam-2.5-1/vignettes/spam.Rmd:170:We proceed by factorizing $\boldsymbol{A}$ into $\boldsymbol{R}^T\boldsymbol{R}$, where $\boldsymbol{R}$ is an upper triangular matrix, called the Cholesky factor or Cholesky triangle of $\boldsymbol{A}$, followed by solving $\boldsymbol{R}^T\boldsymbol{y}=\boldsymbol{b}$ and $\boldsymbol{R}\boldsymbol{x}=\boldsymbol{y}$, called forwardsolve and backsolve, respectively.
r-cran-spam-2.5-1/vignettes/spam.Rmd-171-To reduce the fill-in of the Cholesky factor $\boldsymbol{R}$, we permute the columns and rows of $\boldsymbol{A}$ according to a (cleverly chosen) permutation $\boldsymbol{P}$, i.e., $\boldsymbol{U}^T\boldsymbol{U}=\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}$, with $\boldsymbol{U}$ an upper triangular matrix.
##############################################
r-cran-spam-2.5-1/R/spam_solve.R-356-# base rule:
r-cran-spam-2.5-1/R/spam_solve.R:357:#  `nrow(x) * .Machine$double.neg.eps * max(diag(x)`.
r-cran-spam-2.5-1/R/spam_solve.R-358-
##############################################
r-cran-spam-2.5-1/inst/doc/spam.Rmd-169-To be more specific about one of `spam`'s main features, assume we need to calculate $\boldsymbol{A}^{-1}\boldsymbol{b}$ with $\boldsymbol{A}$ a symmetric positive definite matrix featuring some sparsity structure, which is usually accomplished by solving $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$.
r-cran-spam-2.5-1/inst/doc/spam.Rmd:170:We proceed by factorizing $\boldsymbol{A}$ into $\boldsymbol{R}^T\boldsymbol{R}$, where $\boldsymbol{R}$ is an upper triangular matrix, called the Cholesky factor or Cholesky triangle of $\boldsymbol{A}$, followed by solving $\boldsymbol{R}^T\boldsymbol{y}=\boldsymbol{b}$ and $\boldsymbol{R}\boldsymbol{x}=\boldsymbol{y}$, called forwardsolve and backsolve, respectively.
r-cran-spam-2.5-1/inst/doc/spam.Rmd-171-To reduce the fill-in of the Cholesky factor $\boldsymbol{R}$, we permute the columns and rows of $\boldsymbol{A}$ according to a (cleverly chosen) permutation $\boldsymbol{P}$, i.e., $\boldsymbol{U}^T\boldsymbol{U}=\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}$, with $\boldsymbol{U}$ an upper triangular matrix.
##############################################
r-cran-spam-2.5-1/debian/tests/run-unit-test-6-if [ "$AUTOPKGTEST_TMP" = "" ] ; then
r-cran-spam-2.5-1/debian/tests/run-unit-test:7:    AUTOPKGTEST_TMP=`mktemp -d /tmp/${debname}-test.XXXXXX`
r-cran-spam-2.5-1/debian/tests/run-unit-test-8-    trap "rm -rf $AUTOPKGTEST_TMP" 0 INT QUIT ABRT PIPE TERM