===========================================================
                                      .___ __  __   
          _________________  __ __  __| _/|__|/  |_ 
         / ___\_` __ \__  \ |  |  \/ __ | | \\_  __\
        / /_/  >  | \// __ \|  |  / /_/ | |  ||  |  
        \___  /|__|  (____  /____/\____ | |__||__|  
       /_____/            \/           \/           
              grep rough audit - static analysis tool
                  v2.8 written by @Wireghoul
=================================[justanotherhacker.com]===
sdpb-1.0/docs/SDPB-Manual.tex-200-\ee
sdpb-1.0/docs/SDPB-Manual.tex:201:where $W_j^n(x)$ are matrix polynomials.  The normalization condition $n\.z=1$ can be used to solve for one of the components of $z$ in terms of the others.  Calling the remaining components $y\in \R^N$, we arrive at (\ref{eq:PMPconstraint}), where $M_j^n(x)$ are linear combinations of $W^n_j(x)$ and $b_0,b_n$ are linear combinations of the $a_n$.  This difference in convention is for convenient use in the conformal bootstrap.
sdpb-1.0/docs/SDPB-Manual.tex-202-
##############################################
sdpb-1.0/docs/SDPB-Manual.tex-355-\ee
sdpb-1.0/docs/SDPB-Manual.tex:356:where ``$\succeq 0$" means ``is positive-semidefinite" and
sdpb-1.0/docs/SDPB-Manual.tex-357-\be