=========================================================== .___ __ __ _________________ __ __ __| _/|__|/ |_ / ___\_` __ \__ \ | | \/ __ | | \\_ __\ / /_/ > | \// __ \| | / /_/ | | || | \___ /|__| (____ /____/\____ | |__||__| /_____/ \/ \/ grep rough audit - static analysis tool v2.8 written by @Wireghoul =================================[justanotherhacker.com]=== sdpb-1.0/docs/SDPB-Manual.tex-200-\ee sdpb-1.0/docs/SDPB-Manual.tex:201:where $W_j^n(x)$ are matrix polynomials. The normalization condition $n\.z=1$ can be used to solve for one of the components of $z$ in terms of the others. Calling the remaining components $y\in \R^N$, we arrive at (\ref{eq:PMPconstraint}), where $M_j^n(x)$ are linear combinations of $W^n_j(x)$ and $b_0,b_n$ are linear combinations of the $a_n$. This difference in convention is for convenient use in the conformal bootstrap. sdpb-1.0/docs/SDPB-Manual.tex-202- ############################################## sdpb-1.0/docs/SDPB-Manual.tex-355-\ee sdpb-1.0/docs/SDPB-Manual.tex:356:where ``$\succeq 0$" means ``is positive-semidefinite" and sdpb-1.0/docs/SDPB-Manual.tex-357-\be