===========================================================
                                      .___ __  __   
          _________________  __ __  __| _/|__|/  |_ 
         / ___\_` __ \__  \ |  |  \/ __ | | \\_  __\
        / /_/  >  | \// __ \|  |  / /_/ | |  ||  |  
        \___  /|__|  (____  /____/\____ | |__||__|  
       /_____/            \/           \/           
              grep rough audit - static analysis tool
                  v2.8 written by @Wireghoul
=================================[justanotherhacker.com]===
wannier90-3.1.0+ds/config/make.inc.qe-17-
wannier90-3.1.0+ds/config/make.inc.qe:18:LIBS  = `echo $(LAPACK_LIBS) | sed -e "s/..\/flib/..\/..\/flib/g"`  \
wannier90-3.1.0+ds/config/make.inc.qe:19:  `echo  $(BLAS_LIBS) | sed -e "s/..\/flib/..\/..\/flib/g"` $(MASS_LIBS)
##############################################
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex-133-\end{equation}
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex:134:where $N_v=8$, number of valence electrons per unit cell when no dopants are considered, $N_c= nV_{cell}$ is the number of carriers per unit cell ($V_{cell}$ is the volume of the unit cell in cm$^{-3}$). $g(\varepsilon,T=0)$ is the density of states at $T=0$K and by assumption it does not change with $T$. Finally, $f(\varepsilon,\mu(T))$ is the Fermi-Dirac distribution as a function of $\varepsilon$ and $T$
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex-135-\begin{equation}
##############################################
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex-157-\begin{quote}
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex:158:mulist=`cat mu.dat | awk '{printf "i4" \$1}'`; i=0; for mu in \$mulist; do i=`echo \$i+1|bc` ; cat Si\_seebeck.dat | awk -v "mu=\$mu" '{if(\$1==mu) print \$1,\$2,\$3,\$7,\$11}' | awk -v "Tcol=\$i" '{if(NR==Tcol) print \$1, \$2, \$3, \$4, \$5}' >> Si\_seebeck\_vs\_T.dat;done
wannier90-3.1.0+ds/doc/solution_booklet/Example16.tex-159-\end{quote}
##############################################
wannier90-3.1.0+ds/doc/solution_booklet/Example8.tex-104-	\end{equation}
wannier90-3.1.0+ds/doc/solution_booklet/Example8.tex:105:	where $f\tinysub{MV}(\epsilon,\uparrow) = \int_{-\infty}^{\epsilon} \mathrm{d}\epsilon'\,\widetilde{\delta}(\epsilon')$ is the Marzari-Vanderbilt occupation number function, with $$\widetilde{\delta}(x) = \frac{2}{\sqrt{\pi}}e^{-[x-(1/\sqrt{2})]^2}(2\,-\,\sqrt{2}x), \quad x=\frac{\mu-\epsilon}{\sigma},$$
wannier90-3.1.0+ds/doc/solution_booklet/Example8.tex-106-	where $\epsilon_F$ is the Fermi energy ($12.6256$ eV) and $\sigma$ is the smearing ($0.02$ eV). $g(\epsilon,\uparrow)$ is the DOS from \Wannier{} interpolation. 
##############################################
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-784-
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex:785:gnuplot> plot `iron\_up\_dos.dat' u (-\$2):(\$1-12.6256) w l,`iron\_dn\_dos.dat' u 2:(\$1-12.6256) w l
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-786-
##############################################
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-1621-
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex:1622:Plot the Seebeck coefficient for the three temperatures $T=300$~K, $T=500$~K and $T=700$~K. To do this, you have to filter the {\tt Si\_seebeck.dat} to select only those lines where the second column is equal to the required temperature. A possible script to select the $S_{xx}$ component of the Seebeck coefficient for $T=500$~K using the {\tt awk/gawk} command line program is the following:
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-1623-\begin{verbatim}
##############################################
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-2935-  \item[2]{Valence bands + conduction bands: In this case we will compute 8 localized WFs corresponding to the 4 valence bands and 4 low-lying conduction bands. Here, we don't have a separate manifold, since the conduction bands are entangled with other high-energy bands and the columns of the density matrix are not exponentially localized by construction. A modified density matrix is required in this case\cite{LinLin-ArXiv2017}, and it is defined as: $$P(\mathbf{r},\mathbf{r}') = \sum_{n,\mathbf{k}} \psi_{n\mathbf{k}}(\mathbf{r})f(\varepsilon_{n,\mathbf{k}})\psi_{n\mathbf{k}}^\ast(\mathbf{r}'),$$
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex:2936:  where $\psi_{n\mathbf{k}}$ and $\varepsilon_{n,\mathbf{k}}$ are the energy eigestates and eigenvalues from the first-principle calculation respectively. The function $f(\varepsilon_{n,\mathbf{k}})$ contains two free parameters $\mu$ and $\sigma$ and is defined as a complementary error function: $$f(\varepsilon_{n,\mathbf{k}}) = \frac{1}{2}\mathrm{erfc}\left(\frac{\varepsilon_{n,\mathbf{k}} - \mu}{\sigma}\right).$$ }
wannier90-3.1.0+ds/doc/tutorial/tutorial.tex-2937-  \begin{enumerate}
##############################################
wannier90-3.1.0+ds/doc/user_guide/berry.tex-268-$\hat{j}_{\alpha}^{\gamma}=
wannier90-3.1.0+ds/doc/user_guide/berry.tex:269:\frac{1}{2}\{\hat{s}_{\gamma},\hat{v}_{\alpha}\}$ where the spin operator $\hat{s}_{\gamma}=\frac{\hbar}{2}\hat{\sigma}_{\gamma}$. Indices $\alpha,\beta$ denote Cartesian directions, $\gamma$ denotes the direction of spin, commonly $\alpha = x, \beta = y, \gamma = z$.  $\Omega_c$ is the
wannier90-3.1.0+ds/doc/user_guide/berry.tex-270-cell volume, $N_k$ is the number of $k$-points used for sampling the
##############################################
wannier90-3.1.0+ds/doc/user_guide/boltzwann.tex-49-
wannier90-3.1.0+ds/doc/user_guide/boltzwann.tex:50:In the above formula, the sum is over all bands $n$ and all states $\bvec k$ (including spin, even if the spin index is not explicitly written here). $E_{n,\bvec k}$ is the energy of the $n-$th band at $\bvec k$, $v_i(n,\bvec k)$ is the $i-$th component of the band velocity at $(n,\bvec k)$, $\delta$ is the Dirac's delta function, $V = N_k \Omega_c$ is the total volume of the system ($N_k$ and $\Omega_c$ being the number of $k$-points used to sample the Brillouin zone and the unit cell volume, respectively), and finally $\tau$ is the relaxation time. In the \emph{relaxation-time approximation} adopted here, $\tau$ is assumed as a constant, i.e., it is independent of $n$ and $\bvec k$ and its value (in fs) is read from the input variable \verb#boltz_relax_time#.
wannier90-3.1.0+ds/doc/user_guide/boltzwann.tex-51-
##############################################
wannier90-3.1.0+ds/doc/user_guide/files.tex-1049-the integer co-efficient of the G-vector components $a,b,c$
wannier90-3.1.0+ds/doc/user_guide/files.tex:1050:(where $\mathbf{G}=a\mathbf{b}_1+b\mathbf{b}_2+c\mathbf{b}_3$),
wannier90-3.1.0+ds/doc/user_guide/files.tex-1051-then the real and imaginary parts of the corresponding
##############################################
wannier90-3.1.0+ds/doc/user_guide/parameters.tex-1386-lattice vector $\mathbf{R}=N_1 \mathbf{A}_{1} + N_2 \mathbf{A}_{2} + N_3 \mathbf{A}_3$,
wannier90-3.1.0+ds/doc/user_guide/parameters.tex:1387:where $N_i=0$ if $\mathbf{A}_i$ is parallel to any of the
wannier90-3.1.0+ds/doc/user_guide/parameters.tex-1388-confined directions specified by \verb#one_dim_axis#,
##############################################
wannier90-3.1.0+ds/doc/user_guide/projections.tex-422-equation for $l=0$, i.e., the radial parts of the 1s,
wannier90-3.1.0+ds/doc/user_guide/projections.tex:423:2s, 3s\ldots\ orbitals, where $\alpha=Z/a={\tt zona}$. \label{tab:radial}}
wannier90-3.1.0+ds/doc/user_guide/projections.tex-424-\end{center}
##############################################
wannier90-3.1.0+ds/examples/example32/generate_weights.sh-18-	if [ $i -lt 10 ]; then 
wannier90-3.1.0+ds/examples/example32/generate_weights.sh:19:           line=`echo "e(   $i)"`;
wannier90-3.1.0+ds/examples/example32/generate_weights.sh-20-        else
wannier90-3.1.0+ds/examples/example32/generate_weights.sh:21:           line=`echo "e(  $i)"`;
wannier90-3.1.0+ds/examples/example32/generate_weights.sh-22-	fi;
##############################################
wannier90-3.1.0+ds/utility/w90pov/doc/w90pov.tex-86-
wannier90-3.1.0+ds/utility/w90pov/doc/w90pov.tex:87:Of course replace {\tt <seedname>} with the seedname from the \textsf{wannier90} calculation, and {\tt \{height\} and \{width\} } with the desired size of your picture. The ``{\tt +A}" option enables anti-aliasing. In addition, the output format can be controlled using ``{\tt +F}"$x$, where $x$ can take, for example, the values {\tt C} (compressed Targa-24), {\tt N} (PNG), {\tt P} (PPM), or {\tt T} (uncompressed Targa-24). The output file name can be set using ``{\tt +O<outfile>}". Please refer to the \textsf{POV-Ray} documentation for further details.
wannier90-3.1.0+ds/utility/w90pov/doc/w90pov.tex-88-
##############################################
wannier90-3.1.0+ds/utility/w90vdw/doc/w90vdw.tex-134-  is a logical vector of length 3. For example,  
wannier90-3.1.0+ds/utility/w90vdw/doc/w90vdw.tex:135:  ``$\tt{F\ F\ T}$" corresponds to the z-direction; `$\tt{T\ F\ F}$" to the x-direction,
wannier90-3.1.0+ds/utility/w90vdw/doc/w90vdw.tex-136-  etc. Only used if $\tt{disentangle